

ISO TC197 WG27/WG28

Metrology research for hydrogen standardisation: a cross-cutting approach

07th October 2018

F Haloua, <u>T Bacquart</u>, K Arrhenius, B Delobelle, S Persijn, O Büker, A Rojo, R Perez, B Gozlan, I Profatilova, O Gillia, F Auprêtre

ISO TC158 JWG7 – 08/10/2018 – AFNOR (Paris, FRANCE)

?

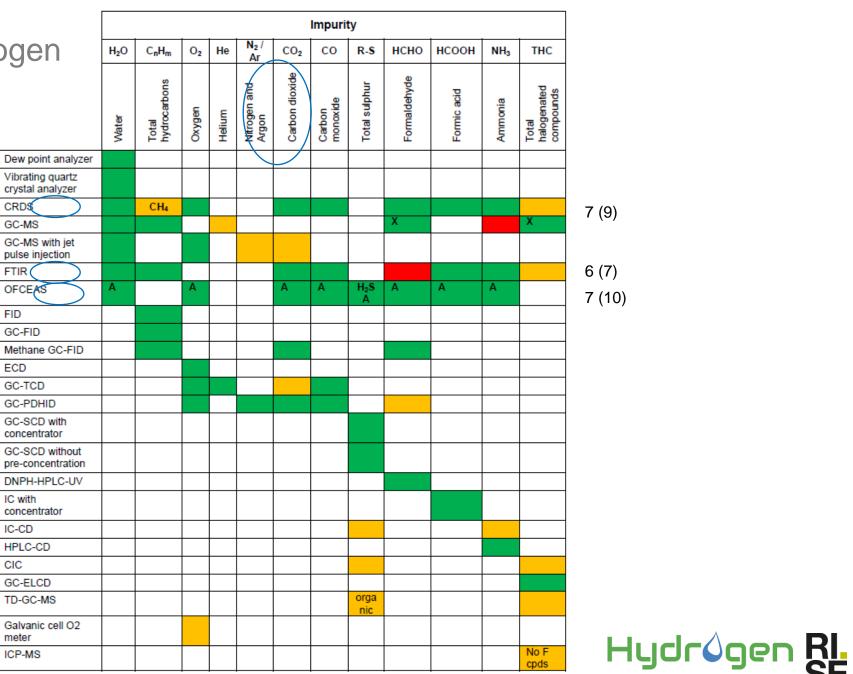
Proposing optimised analytical protocols (including fitfor-purpose analytical methods)

Discussing the presence of other potentially harmful impurities not yet specified

Identify the challenges in implementing ISO 14687-2 in routine laboratory/analysis

Groundwork for potential revision of the standard

- Literature review of impurity analysis methods
- Methods development
- Analytical procedures and multi-components analyser
- Investigation beyond ISO 14687-2



Literature review for hydrogen quality

Can be updated during the project

Sources

- ASTM standards
- JIS standards
- NMI methods: NPL, (RISE)
- Some contacts with instruments providers

chnique

ē

Analytical

Comparison of methods based on performance characteristics

Water Limit ISO <u>1468</u>7

5 µmol/mol

Methods	Working range	Detection limit (µmol/mol)	Selectivity	Repeatability	Linearity	Robustness	Accuracy
Dew point hygrometer	1 - > 250 μmol/mol	1	good				
Vibrating quartz crystal analyzer	2 - 250 µmol/mol	2	good				
CRDS		Low range: 0.0008	High	0.0001 µmol/mol at 0.00044 µmol/mol	linearity coeff >0.995 over 4 magnitudes of concentration		
CRDS	ex: 0.006-1750 µmol/mol	High range: 0.0042	high	0.0052 µmol/mol at 0.0015 µmol/mol			
GC-MS		0.8					
GC-MS with jet pulse injection		at least 4 µmol/mol		1.6 at 5.1 µmol/mol			
OFCEAS	adaptable / 0-10 µmol/mol	lod 3σ 60seconds 0,001 μmol/mol	high	<1%	linearity coeff >0.999 linear on 4 to 5 decades of concentration	high	< 0.01 µmol/mol
OFCEAS	adaptable / 0- 100 µmol/mol	Expected lod 3 0 60seconds 0,01 µmol/mol			linearity coeff >0.999 linear on 4 to 5 decades of concentration		Expected < 0.1
			high	< 1%		high	µmol/mol
FTIR		0.12-0.3	high				

RI.

ISO TC158 JWG7 - 08/10/2018 - AFNOR (Paris, FRANCE)

Comparison of methods based on performance characteristics

Water Limit ISO 14687 5 µmol/mol

Methods	Precision	Measurement uncertainties	Volume needed	Pressure required	Sampling Vessels	Other impurities analysable with this method	Response time	Standards	Cost estimations
Dew point hygrometer			0.5 L/min for 30 min minimum (stabilisation may take longer)	adaptable close to atm	Compatible		Direct reading but long stabilisation time	JIS K0225	
Vibrating quartz crystal analyzer			0.33 L/min for 20 min	adaptable close to atm	Compatible		direct reading but long stabilisation time	JIS K0225	
CRDS							2-3 minutes	D7941/D7941M-14	
CRDS			100 ml/min @ 15 min = 1.5 liter			4 impurities (ex: CO, CO2, H2O, CH4 or NH3)	10-15 minutes	D7941/D7941M-14	4-species: 50 to 65 K€, single species: 40 K€
GC-MS									
GC-MS with jet pulse injection						CO2, Ar, N2, O2		ASTM D7649-10	
OFCEAS	1% relative or 2 LOD (which is worst).	0.005 µmol/mol	in standard flow13l/h ; volume needed <11 special solution for fuel cell exhaust test flow < 2l/h	adaptable 2 bara is great	compatible	configuration dependend (several laser on the same system can be set)	< 1 minute	Information from AP2E	35K€ but combination of gas possible in 1 analyzer
OFCEAS	1% relative or 2 LOD (which is worst).	expected < 0.05	in standard flow13l/h ; volume needed <11 special solution for fuel cell exhaust test flow < 2l/h	adaptable 2 bara is great	compatible	HCHO, HCOOH, NH3 ppb level range to be confirmed on the same laser		Information from AP2E	50K€ but combination of gas possible in 1 analyzer
FTIR						NH3, CO, CO2, formaldehyde, formic acid, methane		ASTM D7653-10	80 K€ for MKS multigas 2031 LN2

Hydrogen

RI.

Plan for the further development of analytical methods

Table 2: Identified performance characteristics among LOQ (Limit of Quantification), selectivity, working range, precision, trueness and ruggedness that requires further evaluation

Methods	Compounds	LOD	Selectivity	Working range	Precision	Trueness	Ruggedness	Standardised methods	Methods information in public domain	In-house methods
OFCEAS	H2O									Under
	02									evaluation
	CO									by RISE
	CO2]
	CH2O									
	CH2O2									
	NH3									
	H2S									To be validated, RISE (16ENG01)
	CH4									
	HCI									
	HBr									
CRDS	H2O							ASTM D7941-14		NPL in house methods
	02							ASTM D7941-14		
	CO2							ASTM D7941-14		
	CO							ASTM D7941-14		
	СО									VSL in house methods
	CH2O2									VSL in house methods
	NH3							ASTM D7941-14		VSL in house methods
	CH4							ASTM D7941-14		VSL in house methods
	HCI									VSL in house methods
	HBr									

ASTM published standards are validated for precision and bias by undergoing an inter-laboratory study program (ILS), in which the standard is tested by I ndependent laboratories.

2016, only one of the H2 standards has undergone an ILS (unfinished): ASTM D7653-10 (FTIR) (NH3, CO2, CO, CH2O, CH2O2, H2O)

ISO TC158 JWG7 - 08/10/2018 - AFNOR (Paris, FRANCE)

Plan for the further development of analytical methods

Table 2: Identified performance characteristics among LOQ (Limit of Quantification), selectivity, working range, precision, trueness and ruggedness that requires further evaluation

Methods	Compounds	LOD	Selectivity	Working range	Precision	Trueness	Ruggedness	Standardised methods	Methods information in public domain	In-house methods
FTIR	H2O							ASTM D7653-10	uomain	
	CO2							ASTM D7653-10		
	CO							ASTM D7653-10		
	CH2O							ASTM D7653-10		VSL in
	0.120									house methods
	CH2O2							ASTM D7653-10		NPL in house methods
	NH3							ASTM D7653-10		NPL in house methods
	CH4							ASTM D7653-10		
GC-TCD	02									NPL in house methods
	Не									NPL in house methods
	N2									NPL in house methods
	Ar									
GC-FID	CH4									Validated by RISE, activity A2.2.3 [2]

ASTM published standards are validated for precision and bias by undergoing an inter-laboratory study program (ILS), in which the standard is tested by independent laboratories.

RI

Hydrogen

ISO TC158 JWG7 – 08/10/2018 – AFNOR (Paris, FRANCE)

Plan for the further development of analytical methods

RI.

Hydrogen

Table 2: Identified performance characteristics among LOQ (Limit of Quantification), selectivity, working range, precision, trueness and ruggedness that requires further evaluation

Methods	Compounds	LOD	Selectivity	Working range	Precision	Trueness	Ruggedness	Standardised methods	Methods information in public domain	In-house methods
GC-MS	H2O							ASTM D7649-10		
	02							ASTM D7649-10		
	Не							JIS K 0123		
	N2							ASTM D7649-10		
	CO2							ASTM D7649-10		
	Ar							ASTM D7649-10		
	NH3									
	CH2O							ASTM D7892-15		
	Hydrocarbons							ASTM D7892-15		
	Organic sulfur									
	Organic halides							ASTM D7892-15		To be validated (16ENG01)
Dew point hygrometer	H2O							JIS K0225		NPL in house methods
Vibrating quartz crystal analyzer	H2O							JIS K0225		NPL in house methods
Electrochemical sensor	O2							ASTM D7607-11		
GC-PDHID	02								Rapport NPL [3]	NPL in house methods
	N2									NPL in house methods
	Ar									NPL in house methods
	CO2									
Galvanic cell O2 meter	02							JIS K0225		
Methanizer GC- FID	со									VSL and NPL in house

ISO TC158 JWG7 - 08/10/2018 - AFNOR (Paris, FRANCE)

- Literature review of impurity analysis methods
- Methods development
- Analytical procedures and multi-components analyser
- Investigation beyond ISO 14687-2

Validated analytical methods to fulfill ISO 14687-2 impurity specifications

- Development of analytical and speciation methods for challenging impurities
 - ✓ Total species determination is a real analytical challenge for metrology consideration
 - ightarrow keeping high level of sensitivity, measuring ranges and measurement uncertainty
 - ✓ Can cover a large number of species for halogenated, hydrocarbons and sulphur compounds
 - ✓ The identification of all species is almost impossible in routine analysis
- <u>Performance assessment of multi-component analysers</u>
 - ✓ Not turnkey solutions commercially available
 - ✓ Need to be designed based on the clients' specifications
 - ✓ Specifications and performances in terms of sensitivity, selectivity, reproducibility need to be assessed

Identify the challenges in implementing revised ISO 14687-2 in routine laboratory/analysis

Groundwork for potential revision of the standard

Development of analytical and speciation methods for total sulphur compounds

NPL developed and validated a speciation method based on cryo-focussed GC coupled with SCD for the measurement of sulphur species

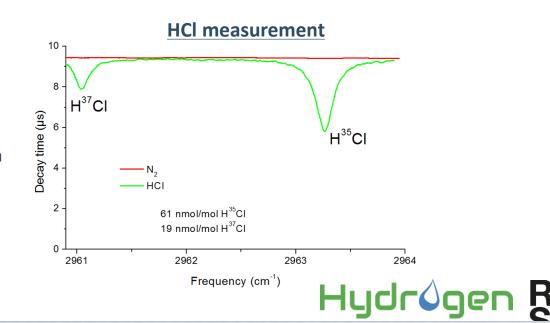
Hudroger

ISO 14687-2 threshold **Compounds (for hydrogen** minimum 99.97% mol [umol/mol] Exceeding this limit could cause degradation of Pt in Total sulphur compounds 0.004 FC system 25000 500 400 20000 300 ¥ 200 Cryo-focussing system concentrates sample prior to separation – ≧ 15000 increased sensitivity – 400 nmol/mo Distinguish different sulphur-containing compounds below 4 nmol/mol 40 nmol/mo S 10000 4 nmol/mo Individual compounds can be identified and guantified. Effects on fuel Re 5000 cell assessed 2 4 6 8 10 Time / mins Qualification of the instrument for selectivity, limit of Signal Limit of detection Concentration detection, linearity, precision and robustness has Compound (nmol/mol) Height (µV) (pmol/mol) validated the method Hydrogen sulphide 4.2 245.0 514 4.3 248 Carbonyl sulphide 301.7 Carbon disulphide 2-methyl-2-propanethiol 3.8 94.1 1211 3.6 199.7 Tetrahydrothiophene

ISO TC158 JWG7 – 08/10/2018 – AFNOR (Paris, FRANCE)

•

Development of analytical and speciation methods for total halogenated compounds


VSL developed and validated a speciation method based on Cavity Ring Down Spectrometry operating in the mid-infrared for the measurement of halogenated species

Compounds (for hydrogen minimum 99.97% mol)	ISO 14687-2 threshold [µmol/mol]	VSL
Total halogenated compounds	0.05	Exceeding this limit could cause irreversible damage of PEMFC

• Operating range λ =2.3 - 5.1 μ m

- Sampling system: coated materials to reduce surface interaction
- Instrument can also detect formaldehyde, formic acid & ammonia
- Measurement of the main isotopes
- LoD down to sub nmol/mol using strongest HCl absorption line

Alter

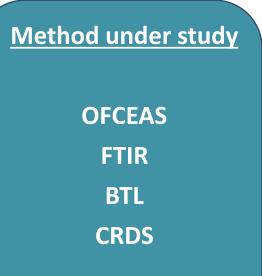
Development of analytical and speciation methods for total hydrocarbons

RISE developed and validated a speciation method based on the combination of two analytical techniques: GC/FID and TD-GC/FID-MS for the measurement of separate hydrocarbons in hydrogen

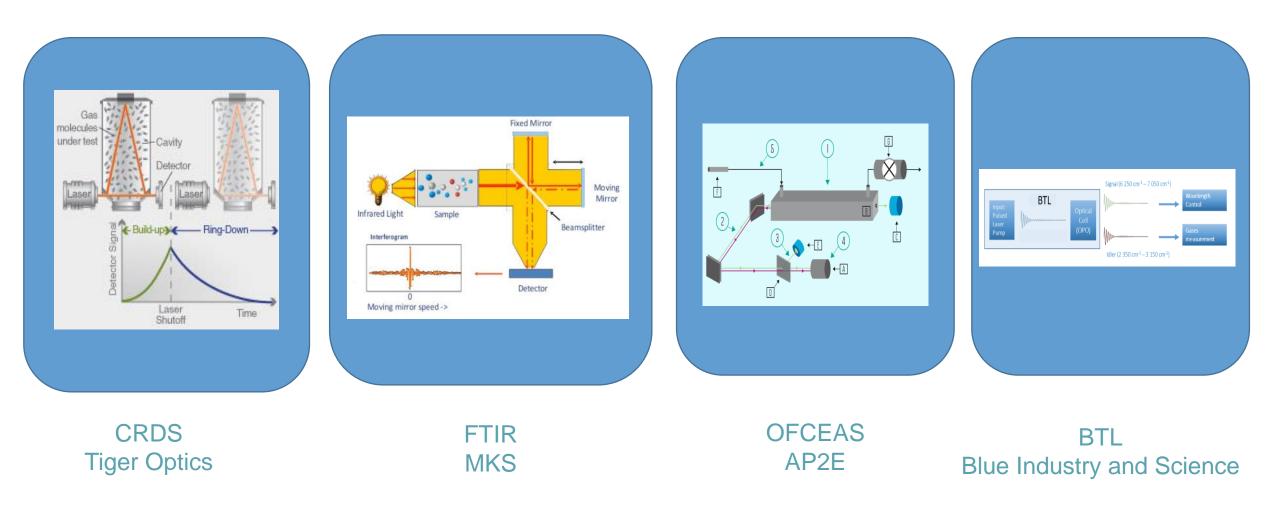
Compounds (for hydrogen minimum 99.97% mol)	ISO 14687-2 threshold [μmol/mol]	Exceeding this limit for alkenes and aromati	icc
Methane CH₄	2		103
Non CH ₄ hydrocarbons	2	could degrade the FC system	

Method	Hydrocarbon	Limit of Detection	
GC/FID	CH ₄ and other hydrocarbons including oxygenated organic species as alcohols, ketones with relatively low boiling point (BP < 70°C)	comprised between 40-50°C and 100°C can be	0.55 μmol mol ⁻¹ for total hydrocarbons to be measured with GC/FID method
TD-GC-FID/MS	Other compounds with BP > 70°C	analysed by both methods	\leq 0.69 µmolC mol ⁻¹ for hydrocarbons to be measured

- Literature review of impurity analysis methods
- Methods development
- Analytical procedures and multi-components analyser
- Investigation beyond ISO 14687-2


Analytical procedures and multi-components analyser

Performance assessment of multi-component analysers


- Not turnkey solutions commercially available
- Need to be designed based on the clients' specifications
- Specifications and performances need to be assessed as sensitivity, selectivity, reproducibility

Methods are being compared in terms of:

- ✓ Nature and number of analysed compounds
- ✓ Limit of Detection
- ✓ Uncertainty measurement
- ✓ Number of instruments required
- ✓ Connection
- ✓ Volume/flow and pressure of gas needed
- ✓ Costs

List of instrument specifications for the development of multi-component analysers

RI.

Hydrogen

List of instrument specifications for the development of multi-component analysers using input from A1.3.1

In table 5, the criteria and requirements discussed in the section above are summarized.

	Criteria	Requirements / Action / evidences
Simultaneous analysis of		
several compounds	List of compounds analysed	compare to priority lists
Specifications related to		
method performances		
Detection limit/quantification		
limit	LOQ + uLOQ (k=2) < ISO 14687	Verify detection limit with analysis of PRM
	Preferably 10 * ISO 14687 (at least 2*	
Working range	ISO 14687)	Provide linearity plot
	Interferences versus ISO 14687	Literature or experiments
Selectivity (normal)	composition	If possible use PRM cocktail at ISO 14687 level
	Interference versus critical situation	
Selectivity (extrem)	observed in real situation	Literature / Technical evidences
Precision	< 10 % rel at ISO level	use of PRM at ISO threshold
Trueness	< 10 % rel at ISO level	use of PRM at ISO threshold
	< 20 % rel at ISO level	Provide calculation and equation including at least uC =
Measurement uncertainties	< 50% CH2O and Sulphur	$\sqrt{u(Rw)^2+u(bias)^2}$

RI.

List of instrument specifications for the development of multi-component analysers using input from A1.3.1 In table 5, the criteria and requirements discussed in the section above are summarized.

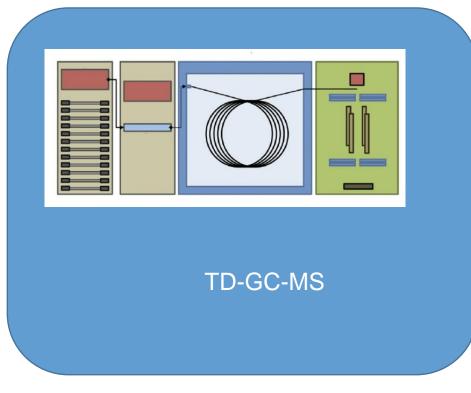
	Criteria	Requirements / Action / evidences
Costs		
Capital costs	Equipment price	Check equipment price versus number of analysis and length life < 1 € / kg H2 produced
Operational costs	Number of calibration / year	Estimate operational cost and maintenance / year < 1 € / kg H2 produced (customer requirements)
Personal, training and third party maintenance support costs	Personal time requirement / year / maintenance	Cost estimation and target < < 1 € / kg H2 produced (customer requirements)
Other requirements		
Response time	Stabilisation time at ISO threshold	< 30 min for stabilisation
Calibration using other matrices than hydrogen	Which standards can be used	evidence of equivalence between PRM in hydrogen and other matrices
Volume of gas needed HRS Buffer	flow and time: 5 L/min and 30 min stabilisation 0.5L/min and 60 min stabilisation	
low pressure	< 0.5L/min and 30 min stabilisation	Evidence of flow and stabilisation
Use at pressure	Effect of pressure on the system if offered	Demonstrate measurement with PRM at high pressure and no bias

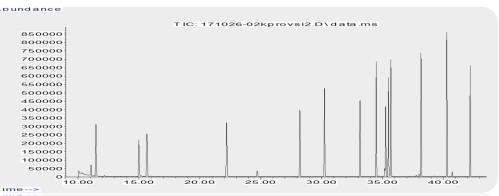
*PRM: Primary reference materials

Assessment of the performances of instruments enabling the simultaneous analysis of compounds mentioned in ISO 14687-2 Table 2: Information provided by gas analyzers

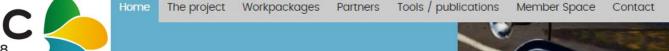
	CRDS	FTIR	OFCEAS	X-FLR
Water	Instrument 1	Instrument 1	Instrument 1	
Oxygen	Instrument 4		Instrument 2	Need dev.
Carbon dioxide	Instrument 1	Instrument 1	Instrument 2	
Carbon monoxide	Instrument 1	Instrument 1	Instrument 1	Need dev.
Formaldehyde	Instrument 3	Instrument 1	Instrument 1	
Formic acid		Instrument 1	Instrument 1	
Ammonia	Instrument 2	Instrument 1	Instrument 1	Need dev.
Helium				
Total nitrogen and				
argon				
Total hydrocarbons		Methane,		
		ethane		
Methane	Instrument 1	Instrument 1	Instrument 1	yes
Total sulfur				
compounds				
Hydrogen sulfide			Instrument 1	Need dev.
Total halogenated				
compounds				
Hydrogen chloride	Instrument 5		Instrument 2	Yes
Hydrogen bromide				yes
Number of	4 (5 with HCI)		2 racks 19inch 4U	All in one
instruments required			and external ump	instrument
Combined price	170 -185 k€	80 – 100 k€	~160 -180 k€	70-90 k€
Instruments	In parallel		Total sample	Digital signal
connection			consumption 20 I/h at	RS 232
			atmospheric pressure	Gas ports
				Swagelock 1/8
			Connection Swagelock	
			1/4inch	
			Analysers should be in	
			series	
Contact	Tiger Optics, Florian	MKS and a	AP2E	Blue Industry
	Adler	Swedish	Etienne Smith	and Science,
		distributor		Olivier Le
		(ROWACO)		Mauguen
Volume/flow and	12 l/h	30-60 l/h	20 l/h	< 100 ml total,
pressure of gas				Low pressure
needed	I			

RI.


Hydrogen



- Literature review of impurity analysis methods
- Methods development
- Analytical procedures and multi-components analyser
- Investigation beyond ISO 14687-2


Analyze of data produced in WP1 sampling campaigns to assess the presence of potentially harmful compounds (if any) detected in real hydrogen samples

sampling campaign at hydrogen production point (> 15 samples)
→ analyzed with TD-GC-MS after transfer to a Tenax tubes:

- Delivery time sometimes > 3 weeks: risk for adsorption on the walls of the vessel
- Vessel's material, some sulfinert-treated, some stainless steel: risk for adsorption on the walls of the vessels
- Difficulty to obtain a real blank: some compounds found in the first samples now appear to be "background compounds" (nonanal, siloxanes)

Hydrøgen

Hydrogen, as an energy source, is a clean and storable solution that could meet the worldwide

Part 2: Proton exchange membro 16111:2008 Developing trai metal hvaride) c CEN/TC 268

* frederique.haloua@Ine.fr The two new s are ISO 21087 ad vehicles and ISO 19880-8 Gaseous hydrogen – Fueling stations – Part 8: applications for Fuel quality control.

The EMPIR project Hydrogen runs from 1 June 2016 to 31 May 2019.

A workshop related to the project is planned in November 2018. More info here!

ISO meeting TC197 WG27 / WG28, 7-8th October 2018, AFNOR, Paris (FRANCE)

EURAMET

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Workshop at Air Liquide R&D Centre:

5

Hydrogen quality: publication in International Journal of Hydrogen

Upcoming events

Past events

Publication in Measurement

