Metrology research for hydrogen standardisation: a cross-cutting approach ### **Training course** # Hydrogen purity measurements according to ISO 14687-2 and risk assessment for fuel cells **Training course - 07 November 2018** Air Liquide R&D – Versailles - France - Overview of hydrogen quality requirements - Quality control plan - Monitoring / Sampling Overview of hydrogen quality requirements – 5 min Quality control plan Presentation Exercise Restitution - 15 min - 20 min - 10 min Monitoring / Sampling Presentation - 10 min Exercise - 10 min Summary / Discussion / Questions 5 min - Overview of hydrogen quality requirements - Quality control plan - Monitoring / Sampling ### Hydrogen quality for fuel cell electrical vehicles ### Existing normative documents for fuel cell vehicles exchange membrane (PEM) fuel cell applications for road vehicles 6 Method validation Reporting ### **Technical challenges linked to ISO 14687** | | ISO 14687: 2012 | / SAE J2719:2011 | ISO/C | D 14687 / EN 17124 | |-------------------------|----------------------------------|---|----------------------------------|--| | | Max. admissible value [μmol/mol] | notes | Max. admissible value [μmol/mol] | notes | | Water | 5 | | 5 | | | Total hydrocarbons (TC) | 2 | Due to CH ₄ ,
TC > 2 μmol/mol | 2
except CH ₄ | including oxygenated organic species | | Methane | - | | 100 | | | Oxygen | 5 | | 5 | | | Helium | 300 | | 300 | | | Nitrogen | 100 | N ₂ +Ar<100 | 300 | | | Argon | 100 | N ₂ +Ar<100 | 300 | | | carbon dioxide | 2 | | 2 | | | Carbon monoxide | 0.2 | | 0.2 | CO+HCHO+HCOOH < 0.2μmol/mol | | Total sulphur compounds | 0.004 | H ₂ S, COS, CS ₂ ,
mercaptans (NG) | 0.004 | H ₂ S, COS, CS ₂ , mercaptans (NG) | | Formaldehyde | 0.01 | | 0.2 | CO+HCHO+HCOOH < 0.2μmol/mol | | Formic acid | 0.2 | | 0.2 | CO+HCHO+HCOOH < 0.2μmol/mol | | Ammonia | 0.1 | | 0.1 | | | Halogenated compounds | 0.05 (total) | i.e. HBr, HCl Cl ₂ ,
organic R-X | 0.05 | HCl, organic R-Cl | | Max. particulate conc. | 1 mg/kg | | 1 mg/kg | | ### **Technical challenges linked to ISO 14687** | | ISO 14687: 2012 | / SAE J2719:2011 | ISO/C | D 14687 / EN 17124 | |-------------------------|----------------------------------|---|----------------------------------|--| | | Max. admissible value [μmol/mol] | notes | Max. admissible value [μmol/mol] | notes | | Water | 5 | | 5 | | | Total hydrocarbons (TC) | 2 | Due to CH ₄ ,
TC > 2 μmol/mol | 2
except CH ₄ | including oxygenated organic species | | Methane | - | | 100 | | | Oxygen | 5 | | 5 | | | Helium | 300 | | 300 | | | Nitrogen | 100 | N ₂ +Ar<100 | 300 | | | Argon | 100 | N ₂ +Ar<100 | 300 | | | carbon dioxide | 2 | | 2 | | | Carbon monoxide | 0.2 | | 0.2 | CO+HCHO+HCOOH < 0.2μmol/mol | | Total sulphur compounds | 0.004 | H ₂ S, COS, CS ₂ ,
mercaptans (NG) | 0.004 | H ₂ S, COS, CS ₂ , mercaptans (NG) | | Formaldehyde | 0.01 | | 0.2 | CO+HCHO+HCOOH < 0.2μmol/mol | | Formic acid | 0.2 | | 0.2 | CO+HCHO+HCOOH < 0.2μmol/mol | | Ammonia | 0.1 | | 0.1 | | | Halogenated compounds | 0.05 (total) | i.e. HBr, HCl Cl ₂ ,
organic R-X | 0.05 | HCI, organic R-CI | | Max. particulate conc. | 1 mg/kg | | 1 mg/kg | | ### Technical challenges linked to ISO 14687 | | ISO 14687: 2012 | / SAE J2719:2011 | ISO/C | D 14687 / EN 17124 | |-------------------------|----------------------------------|---|----------------------------------|--| | | Max. admissible value [μmol/mol] | notes | Max. admissible value [μmol/mol] | notes | | Water | 5 | | 5 | | | Total hydrocarbons (TC) | 2 | Due to CH ₄ ,
TC > 2 μmol/mol | 2
except CH₄ | including oxygenated organic species | | Methane | - | | 100 | | | Oxygen | 5 | | 5 | | | Helium | 300 | | 300 | | | Nitrogen | 100 | N ₂ +Ar<100 | 300 | | | Argon | 100 | N ₂ +Ar<100 | 300 | | | carbon dioxide | 2 | | 2 | | | Carbon monoxide | 0.2 | | 0.2 | CO+HCHO+HCOOH < 0.2µmol/mol | | Total sulphur compounds | 0.004 | H ₂ S, COS, CS ₂ ,
mercaptans (NG) | 0.004 | H ₂ S, COS, CS ₂ , mercaptans (NG) | | Formaldehyde | 0.01 | | 0.2 | CO+HCHO+HCOOH < 0.2µmol/mol | | Formic acid | 0.2 | | 0.2 | CO+HCHO+HCOOH < 0.2µmol/mol | | Ammonia | 0.1 | | 0.1 | | | Halogenated compounds | 0.05 (total) | i.e. HBr, HCl Cl ₂ ,
organic R-X | 0.05 | HCl, organic R-Cl | | Max. particulate conc. | 1 mg/kg | | 1 mg/kg | | Price: 2000 – 6000 € / sample Delay: 2 – 8 weeks - Overview of hydrogen quality requirements - Quality control plan - Monitoring / Sampling ### **Quality control - Prescriptive approach** #### Prescriptive approach methodology Quality analysis of the contaminants listed in ISO 14687: - 1 Potential sources of contaminants - o Sampling procedures - o Characteristics of hydrogen production method(s) - o Characteristics of hydrogen transport method(s) - o Non-routine procedure (for example maintenance, major production system change) - 2 Analysis of possible contaminants - o Possible quantification ### **Quality control - Prescriptive approach** ### Prescriptive approach methodology - Production type - Sampling point - Frequency - Reduced frequency - Online monitoring / operation control - Not satisfied → analysis once a day | | Category: Distril | ution | | | |---|-------------------------------|--------------------|-------------------------|-----------------------| | Facility type | Sampling/
Monitoring point | Contaminant | Threshold
(µmol/mol) | Reduced
frequency | | | | TSa | 0,004 | Annual | | Production of hydrogen from | | THC as C1 | 2 | Annual | | nydrocarbons utilizing steam reforming,
catalytic reforming, partial oxidation, or | Downstream of the | СО | 0,2 | Annual | | ATR, purification using refining | purifier | N2+Ar | 100 | Annual ^{b,c} | | equipment, and distribution | | H ₂ O | 5 | Annual | | - 0.00 | | O ₂ | 5 | Annual ^{b,c} | | | | Halogens | 0,05 | Annual | | Electrolysis of Na Cl for hydrogen, | Downstream of the | N2+Ar | 100 | Annual | | purification, and distribution | purifier | H ₂ O | 5 | Annual ^b | | | | O ₂ | 5 | Annual | | | Downstream of the | TS | 0,004 | Annual | | | | THC as C1 | 2 | Annual | | | | CO | 0,2 | Annual | | | | Halogens | 0,05 | Annual | | Purification of coke-oven gas, and | | N ₂ +Ar | 100 | Annual | | distribution | purifier | H ₂ O | 5 | Annual | | | | O ₂ | 5 | Annual ^b | | | | NH ₃ | 0,1 | Annual | | | | нсно | 0,01 | Annual | | | | HCOOH | 0,2 | Annual | | | | TS | 0,004 | Annual | | | | THC as C1 | 2 | Annual | | Purification of byproduct hydrogen | Downstream of the | CO | 0,2 | Annual | | from ethylene plants, and distribution | purifier | N2+Ar | 100 | Annual ^b | | | | H ₂ O | 5 | Annual | | | | 02 | 5 | Annual | ### **Quality control - Prescriptive approach** ## Prescriptive approach methodology - Supply type - Sampling point - Frequency - Reduced frequency - Online monitoring / operation control - Not satisfied → analysis once a day | | Category: Fueling | station | | | |---|--|--|----------------------|---------------------------------------| | Facility type | Sampling/Monitoring
point | Contaminant | Threshold (µmol/mol) | Reduced
frequency | | | | Those not analysed by the distributor | | Annual | | With off-site supply of transported | End of nozzle | N2+Ar | 100 | Annual ^{b, c} | | compressed or liquid hydrogen | | H ₂ O | 5 | Annual ^{b,d} | | | | O ₂ | 5 | Annual ^{b,c} | | | Downstream of the
deodorant equipment | (Those listed for
the odorant) | | Annual be | | | | Those not analysed
by the distributor | | Annual | | With off-site supply from hydrogen | | N2+Ar | 100 | Annual b.c | | pipelines | End of nozzle | H ₂ O | 5 | Annual ^{b,d} | | | | O ₂ | 5 | Annual ^{b,c} | | | Downstream of the purifier | со | 0,2 | Continuous
and Annual ^b | | | End of nozzle | TS a | 0,004 | Annual | | With on-site supply of hydrogen produced from hydrocarbons utilizing | | THC as C1 | 2 | Annual | | steam reforming, catalytic reforming,
partial oxidation, or ATR and
purification using refining equipment | | co | 0,2 | Annual | | | | N ₂ +Ar | 100 | Annual be | | | | H ₂ O | 5 | Annual ^{b,d} | | | | 02 | 5 | Annual be | | | | N ₂ +Ar | 100 | Annual | | | Downstream of the | H ₂ O | 5 | Continuous
and Annual ^b | | | purnier | Oz | 5 | Continuous
and Annual ^b | | With on-site supply from
hydroelectrolysis and purification using | | Halogens | 0,05 | Annual | | refining equipment | 621770 DSS | N ₂ +Ar | 100 | Annual ^b | | | End of nozzle | H2O | 5 | Annual | | | | O ₂ | 5 | Annual | ### Risk assessment methodology ### Severity class: impact on fuel cell electrical vehicles Table 2: Definition of severity classes | SEVERITY | FCEV Performance | | Impact categories | | |----------|---|--------------------|---------------------------|---------------------------| | CLASS | impact or damage | Performance impact | hardware impact temporary | Hardware impact permanent | | 0 | No impact | No | No | No | | 1 | Minor impact
temporary loss of power
No impact on hardware
Car still operates | Yes | No | No | | 2 | Reversible damage
Requires specific
procedure, light
maintenance.
Car still operates. | Yes or No | Yes | No | | 3 | Reversible damage Requires specific procedure and immediate maintenance. Gradual power loss that does not compromises | Yes | Yes | No | | 4 | Irreversible damage
Requires major repair
(e.g. stack change).
Power loss or Car Stop
that compromises safety | Yes | Yes | Yes | ### Severity class: impact on fuel cell electrical vehicles | Impurity | | Severity Class
for 0 ppm
≤ Concentration
< ISO Value | ISO 14687-2
Threshold
Value ² [ppm] | Severity Class for
ISO Value
≤ Concentration
« Level 1 Value | Level 1 Value
[ppm] | Severity Class for
Level 1 Value
≤ Concentration
≤ 100% | |--|--------------------------------|---|--|---|------------------------|---| | Total non-H ₂ gases | | 0 | 300 | 1 | 300 | 4 | | Total Nitrogen and
Argon | N ₂ , Ar | 0 | 100 | 13 | 3003 | 4 | | Oxygen | 02 | 0 | 5 | No test data
available | | Without test data for
proposed level 1 value
validation already SC4
if ISO Spec exceeded | | Carbon dioxide | CO2 | 0 | 2 | 1 | 3 | 4 | | Carbon monoxide | CO | 0-2 | 0,2 | 2.34 | 1 | 4 | | Methane | CH ₄ | 0 | 100 | 1 | 300 | 4 | | Water | H ₂ 0 | 0 | 5 | 4 |) NA | Already SC4 if ISO
Spec exceeded | | Total sulfur
compounds | H ₂ S
basis | 0-4 | 0.004 | 4 | NA NA | Already SC4 if ISO
Spec exceeded | | Ammonia | NH ₃ | 0 | 0.1 | 4 |) NA | Already SC4 if ISO
Spec exceeded | | Total
hydrocarbons | CH ₄
basis | 0-4 | 2 | 1-4 |) NA | Already SC4 if ISO
Spec exceeded | | Formaldehyde | CH ₂ O | 0 | 0.01 | 2-34 | 1 | 4 | | Formic Acid | CH ₂ O ₂ | 0-2 | 0.2 | 2-34 |) 1 | 4 | | Total halogenated compounds | | 0-4 | 0.05 | 4 | NA NA | Already SC4 if ISO
Spec exceeded | | Helium | He | 0 | 300 | 1 | 300 | 4 | | Maximum
particulates
concentration
(liquid and solid) | | 0-4 | 1 mg/kg | 4 |) NA | Already SC4 if ISO
Spec exceeded | Influence on the severity class is complex and long term ### Probability of occurrence of contaminants | Occurrence class | Class name | Occurrence or frequency | Occurrence or frequency | |------------------|---|---|-------------------------| | 0 | Very
unlikely
(practically
impossible) | Contaminant above threshold never been observed for this type of source in the industry | Never | | 1 | Very rare | Heard in the industry for the type of source / supply chain considered | 1 per 1000000 refueling | | 2 | Rare | Has happened more than once per year in the industry | 1 per 100000 refueling | | 3 | Possible | Has happened repeatedly for this type of source at a specific location | 1 per 10000 refueling | | 4 | Frequent | Happens on a regular basis | Often | ### Risk acceptability matrix | | | | Severity | | | | | |---------------------------------|-------------|--|------------------------|--|----------|-----------------------------------|--| | | | 0 | 1 | 2 | 3 | 4 | | | Occurrence as the | 4 | | | | | | | | combined | 3 | | | | | | | | probabilities of the occurrence | 2 | | | | | | | | along the whole | 1 | | | | | | | | supply chain | 0 | | | | | | | | Key | risk:
ba | acceptable
: additional
irriers are
equired | needed:
barriers or | vestigation
existing
control may
enough | Existing | e risk area:
control
otable | | Guideline from ISO 19880-8 System defined ### Risk acceptability matrix | | | | Severity | | | | |--|------------|--|--------------------------|---|----------|-----------------------------------| | | | 0 | 1 | 2 | 3 | 4 | | Occurrence as the combined probabilities of the occurrence | 4 | | | | | | | | 3 | | | | | | | | 2 | | | | | | | along the whole | 1 | | | 7 | | | | supply chain | 0 | | A | dd barrier / | Control | | | Key | risk
ba | acceptable
: additional
irriers are
equired | needed:
barriers or o | vestigation existing control may enough | Existing | e risk area:
control
otable | Each HRS will have different controls or barriers: - Online sensors (i.e. hygrometers, CO sensor) - Purification system - Procedure (i.e. purging procedure after maintenance) - Trained staff - - Each HRS will have a different risk assessment ### Hydrogen fuel quality and risk assessment Probability of contaminants presence on PEM water electrolyser - Implementation of barriers - Monitoring | Compounds | ISO
14687-2
threshold
[µmol/mol] | PEM water electrolysis (analysis) Results [µmol/mol] | Probability
of
occurrence
[0-4] | |-----------------------------------|---|--|--| | Water H₂O | 5 | > 100 | | | Methane CH ₄ | 2 | < 0.02 - 0.1 | | | Non CH ₄ hydrocarbons | 2 | < 0.02 - 0.09 | | | Oxygen O ₂ | 5 | 18- > 500 | | | Helium He | 300 | < 9 | | | Nitrogen N ₂ | 100 | 1.2 - 4.5 | | | Argon Ar | 100 | < 0.5 | | | Carbon
dioxide CO ₂ | 2 | 0.2 – 5.4 | | | Carbon É
monoxide CO | 0.2 | < 0.02 | | | Total sulphur compounds | 0.004 | < 0.0036 | | | Formaldehyde
HCHO | 0.01 | < 0.005 | | | Formic acid
HCOOH | 0.2 | < 0.1 | | | Ammonia NH ₃ | 0.1 | < 0.1 | | | Total
halogenated | 0.05 | < 0.005 | | Question 1: What is the probability of contaminants presence on PEM water electrolyser (reply directly in the table)? | Compounds | ISO
14687-2
threshold
[µmol/mol] | PEM water electrolysis (analysis) Results [µmol/mol] | Probability
of
occurrence
[0-4] | |-----------------------------------|---|--|--| | Water H₂O | 5 | > 100 | | | Methane CH _₄ | 2 | < 0.02 - 0.1 | | | Non CH ₄ hydrocarbons | 2 | < 0.02 - 0.09 | | | Oxygen O ₂ | 5 | 18- > 500 | | | Helium He | 300 | < 9 | | | Nitrogen N ₂ | 100 | 1.2 - 4.5 | | | Argon Ar [*] | 100 | < 0.5 | | | Carbon
dioxide CO ₂ | 2 | 0.2 – 5.4 | | | Carbon monoxide CO | 0.2 | < 0.02 | | | Total sulphur compounds | 0.004 | < 0.0036 | | | Formaldehyde
HCHO | 0.01 | < 0.005 | | | Formic acid
HCOOH | 0.2 | < 0.1 | | | Ammonia NH ₂ | 0.1 | < 0.1 | | | Total halogenated | 0.05 | < 0.005 | | Question 2: What controls and barriers can be implemented based on your probability of occurrence? | Compounds | ISO
14687-2
threshold
[µmol/mol] | PEM water electrolysis (analysis) Results [µmol/mol] | Probability
of
occurrence
[0-4] | Controls and barriers | Probability of occurrence after control and barrier [0-4] | |-------------------------------------|---|--|--|-----------------------|---| | Water H ₂ O | 5 | > 100 | | | | | Methane CH ₄ | 2 | < 0.02 - 0.1 | | | | | Non CH ₄
hydrocarbons | 2 | < 0.02 - 0 .09 | | | | | Oxygen O ₂ | 5 | 18- > 500 | | | | | Helium He | 300 | < 9 | | | | | Nitrogen N ₂ | 100 | 1.2 - 4.5 | | | | | Argon Ar - | 100 | < 0.5 | | | | | Carbon dioxide CO ₂ | 2 | 0.2 - 5.4 | | | | | Carbon
monoxide CO | 0.2 | < 0.02 | | | | | Total sulphur compounds | 0.004 | < 0.0036 | | | | | Formaldehyde
HCHO | 0.01 | < 0.005 | | | | | Formic acid
HCOOH | 0.2 | < 0.1 | | | | | Ammonia NH ₂ | 0.1 | < 0.1 | | | | | Total halogenated | 0.05 | < 0.005 | | | | 25 Question 3: What controls and barriers would you add on this system? Reply directly on the schematic Question 4: What differences do you observe between your probability of occurrence and this results? | Probability of impurity presence | PEM water electrolysis process with TSA | | | |----------------------------------|--|--|--| | Frequent | None identified | | | | Possible | None identified | | | | Rare | N ₂ , O ₂ , H ₂ O | | | | Very Rare | CO ₂ | | | | Unlikely | He, Ar, CO, CH ₄ , HCHO,
HCOOH, NH ₃ , sulfur
compounds, hydrocarbons
(except CH ₄), halogenated
compounds | | | Differences: **Explanations:** Discussion / Feedback from groups - Overview of hydrogen quality requirements - Quality control plan - Monitoring / Sampling ### Hydrogen quality monitoring - Online analysers / Sensors - Pressure - Flow - Location - Maintenance - Calibration #### Sampling - Pressure - Flow - Location - Sampling material - Sampling procedure ### **Monitoring / Sampling** ### Hydrogen quality monitoring - Online analysers / Sensors - Pressure - Flow - Location - Maintenance - Calibration - Humidity - O₂ CO - CH₄ CO₂ - Sampling - Pressure - Flow - Location - Sampling material - Sampling procedure ### Hydrogen quality monitoring - Online analysers / Sensors - Pressure - Flow - Location - Maintenance - Calibration - Humidity - O₂ CO - CH₄ CO₂ - Sampling - Pressure - Flow - Location - Sampling material - Sampling procedure **Eliminating contamination** ### **Monitoring / Sampling** ### **Monitoring / Sampling Humidity – water vapour** - Cycling purge - Purge through cylinder - Cleanliness of cylinder - Absence of leak ### **Monitoring / Sampling** ### Hydrogen quality monitoring #### Online analysers / Sensors - Pressure - Flow - Location - Maintenance - Calibration #### Humidity - 02 - CŌ - CH₄ - CO_2 #### Sampling - Pressure - Flow - Location - Sampling material - Sampling procedure - Material of sampling system (passivated) - Leak check - Purge - Procedure - Trained staff - Cylinder (transportable, passivated) ### **Example of issues with analytical results** | | | Results with expanded | Results with expanded | Results with expanded | Results with expanded | |-------------------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------| | | | uncertainty (k=2) | uncertainty (k=2) | uncertainty (k=2) | uncertainty (k=2) | | СО | μmol/mol | < 0.02 | < 0.02 | < 0.053 | < 0.053 | | CO ₂ | μmol/mol | 4.2 ± 0.3 | < 0.01 | 0.101 ± 0.004 | 0.443 ± 0.010 | | CH₄ | μmol/mol | < 0.02 | < 0.01 | < 0.02 | 0.031 ± 0.006 | | Non methane hydrocarbons | μmol/mol | 0.08 ± 0.01 | 0.111 ± 0.024 | < 0.05 | < 0.05 | | H ₂ O | μmol/mol | > 500 | > 250 | 2.48 ± 0.25 | < 0.6 | | Total sulphur compounds | μmol/mol | < 0.002 | < 0.0030 | < 0.002 | < 0.002 | | 02 | μmol/mol | > 520 | 1.59 ± 0.45 | 35 ± 2 | 0.45 ± 0.13 | | N ₂ | μmol/mol | 3.7 ± 0.8 | 1.86 ± 0.2 | 134 ± 2 | 2.0 ± 0.5 | | Ar | μmol/mol | < 0.5 | < 0.5 | 1.43 ± 0.10 | < 0.5 | | Total
halogenated
(HCI) | μmol/mol | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | CH2O | μmol/mol | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | CH2O2 | μmol/mol | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | NH3 | μmol/mol | < 0.1 | n.a. | < 0.1 | < 0.1 | | He | μmol/mol | < 5 | < 9 | < 5 | <5 | Question 1: What potential issues do you find in these analysis? Highlight the results of analysis that are suspicious Question 2: Is there results of analysis that were contaminated by the sampling process? ### **Example of issues with analytical results** | | | ISO 14687-2
threshold | Results with expanded uncertainty (k=2) | |-------------------------------|----------|--------------------------|--|--|--|--| | СО | μmol/mol | 0.2 | < 0.02 | < 0.02 | < 0.053 | < 0.053 | | CO ₂ | μmol/mol | 2 | 4.2 ± 0.3 | < 0.01 | 0.101 ± 0.004 | 0.443 ± 0.010 | | CH ₄ | μmol/mol | 2 | < 0.02 | < 0.01 | < 0.02 | 0.031 ± 0.006 | | Non methane hydrocarbons | μmol/mol | 2 | 0.08 ± 0.01 | 0.111 ± 0.024 | < 0.05 | < 0.05 | | H ₂ O | μmol/mol | 5 | > 500 | > 250 | 2.48 ± 0.25 | < 0.6 | | Total sulphur compounds | μmol/mol | 0.004 | < 0.002 | < 0.0030 | < 0.002 | < 0.002 | | 02 | μmol/mol | 5 | > 520 | 1.59 ± 0.45 | 35 ± 2 | 0.45 ± 0.13 | | N ₂ | μmol/mol | 100 | 3.7 ± 0.8 | 1.86 ± 0.2 | 134 ± 2 | 2.0 ± 0.5 | | Ar | μmol/mol | 100 | < 0.5 | < 0.5 | 1.43 ± 0.10 | < 0.5 | | Total
halogenated
(HCI) | μmol/mol | 0.05 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | CH2O | μmol/mol | 0.01 | < 0.005 | < 0.005 | < 0.005 | < 0.005 | | CH2O2 | μmol/mol | 0.2 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | NH3 | μmol/mol | 0.1 | < 0.1 | n.a. | < 0.1 | < 0.1 | | He | μmol/mol | 300 | < 5 | < 9 | < 5 | <5 | | Reply question 2 | | | Normal results or contaminated during sampling | | Reasons | | | | | | | 37 ### **Summary Sampling** ### Hydrogen monitoring - Sampling - Pressure - Flow - Location - Sampling material - Sampling procedure - Material of sampling system (passivated) - Leak check - Purge - Procedure - Trained staff - Cylinder (transportable, passivated) #### **Typical issues:** - Air (ratio N₂ / O₂ / Ar) - Humidity (high content) - Leak check - Purge - Procedure - Trained staff ### **Summary / Questions / Discussions** - Overview of hydrogen quality requirements - ISO 14687 Hydrogen quality - ISO 19880-8 Hydrogen quality control - Quality control plan - Prescriptive - Risk assessment → for each HRS - Severity (fixed) - Probability of contaminant presence - Depend on system and barriers - Monitoring / Sampling - Online - Sampling - Sampling system (passivated); cylinder (transportable, passivated) - Leak check - Purge - Procedure and trained staff #### Contact ### Hydr\0gen ### Hydr@gen Hydrogen, as an energy source, is a clean and storable solution that could meet the worldwide frederique.haloua@lne.fr Part 2: Proton exchange membran 16111:2008 Developing trap metal hydride) a **CEN/TC 268** The two new st are ISO 21087 A ad vehicles and ISO 19880-8 Gaseous hydrogen – Fueling stations – Part 8: applications for Fuel quality control. The EMPIR project Hydrogen runs from 1 June 2016 to 31 May 2019. A workshop related to the project is planned in November 2018. More info here! The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States FUELCELL Workshop at Air Liquide R&D Centre: research and innovation programme and the EMPIR Participating States. Hydrogen quality: publication in International Journal of Hydrogen Upcoming events Past events #### **DOWNLOAD** Publication in International Journal of Hydrogen Energy, April 2018 Flyer Hydrogen JRP EURAMET 3rd Publishable Summary (January 2018) Publication in Measurement ### 2 – PEM Electrolysis + TSA Design of AH2GEN's PEM Water Electrolyser process with TSA ### 2 – PEM Electrolysis + TSA THIS DOCUMENT IS *Public