

Hydrogen Workshop Paris-Saclay, 08/11/2018

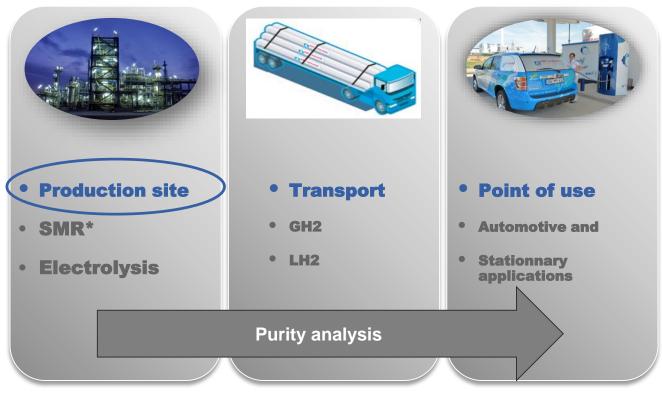
Risk assessment of impurities in hydrogen for fuel cell Martine Carré / Fabien Auprêtre

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

Outline

- 1. Objectives
- 2. H₂ source: PEM Electrolysis
- 3. H₂ source: Steam Methane Reforming
- 4. Conclusion



THIS DOCUMENT IS • Public

2 Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

1 – Objectives

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

Hydrøgen

 Task 1.1: Assessment of probability of impurities existing in real samples of hydrogen

Objectives:

- assessment of the possible impurities that could be produced at the different stages of the hydrogen production process;
- provide the overall probability of these impurities being present in the end-product hydrogen (following purification steps);
- 3 processes: steam methane reforming, electrolysis and chlor-alkali processes.

Task 1.2: Assessment of impact of impurities to fuel cell system

Objectives:

 assess the impact of multiple impurities in hydrogen on fuel cells. 1- Assessment of the presence of impurities in H₂ produced with PEM electrolysis and SMR processes based on risk assessment approach

1 – Objectives

2- Analytical campaign of PEM electrolysis and SMR production sites

Task 1.3: Risk assessment

Objectives:

perform a risk assessment of impurities in fuel cell hydrogen.

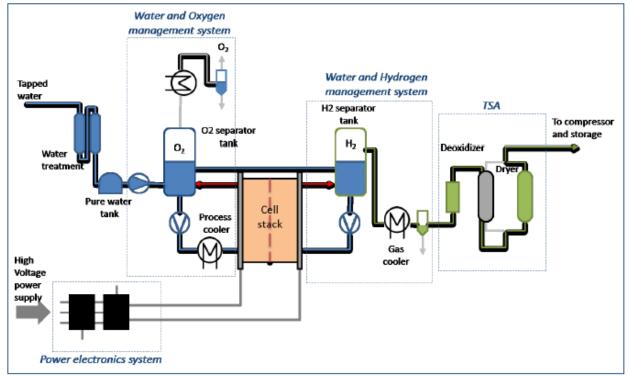
3

THIS DOCUMENT IS • Public

Date 2018-11-08

Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

PEM Electrolysis


THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

2 – PEM Electrolysis + TSA

Process

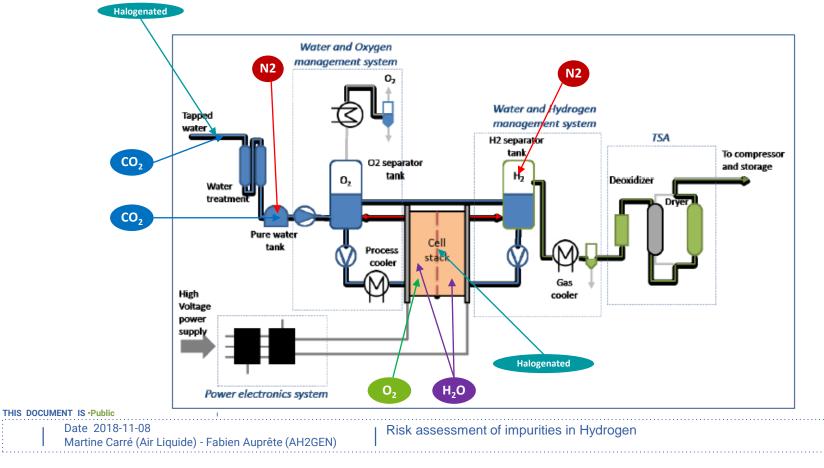
Design of AH2GEN's PEM Water Electrolyser process with TSA

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

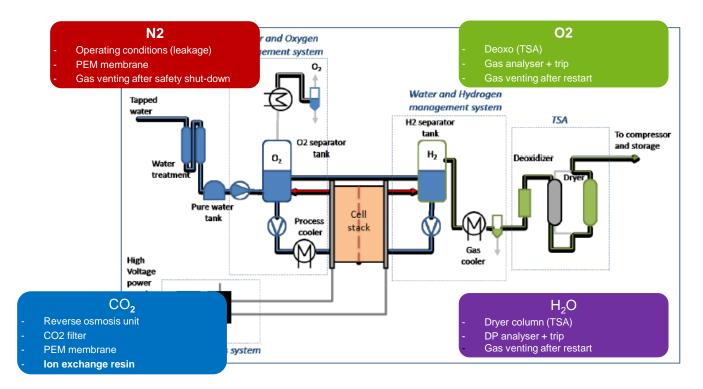
2 – PEM Electrolysis + TSA Impurities

General classification of impurities for PEM electrolysis + H2 purification


Probability of presence of	Impurity
impurity	
Frequent	O ₂ , H ₂ O
Possible	N2
Rare	
Very Rare	CO ₂
Unlikely	He, Ar, CO, CH4, sulfur
	compounds, ammonia, THC
	(except methane),
	formaldehyde, formic acid,
	Halogenated compounds

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)



2 – PEM Electrolysis + TSA Source of impurities

2 – PEM Electrolysis + TSA Existing barriers

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

2 – PEM Electrolysis + TSA

Air Liquide AREVA H₂Gen

Table 5: Risk assessment table for PEM WE +TSA

Risk assessment

	Table 5: Risk assessment table for PEM WE +TSA										
	Contaminant	Thresold [µmol/mol]	Possible cause for the source studied		Existing barrier			Ţ			
	Inert gas: N2		Air intake into pure water tank at anodic side during normal operation	Operating conditions applied in anodic separator tank	PEM membrane (low cross over through the membrane)			0			
		100	N2 use for venting during emergency shut down and/or maintenance	Gas production temporary vented after restart for certain period of time (factory setting)				2	2	1	
			Leakage of H2 inerting valve (N2 used as inerting gas)	H2 operating pressure > N2 pressure supply				1			
			Leakage of pneumatic valves (N2 used as actionning gas)					1			
	Inert gas: Ar	100	Not expected to be present.					0	0	1	
	Oxygen	5	O2 normally generated at the anodic side of cell stack and O2 cross over through the PEM membrane TSA malfunction	Deoxo of TSA Temperature overshoot If O2 content too high. Temperature measurement + trip T*C > 50°C	Analysis + trip at xx ppm at TSA outlet xx < 5 ppm	Gas production temporary vented after restart for certain period of time (factory setting)		2	2	0	
	Carbon dioxide	e 2	from tap water at anodic side	Reverse osmosis purification unit	anodic separator tank lon exchange resin in closed water loop	PEM membrane (low cross over through the membrane)	low 1	,	1		
Carbon dioxide	•	from air into PWT at anodic side	CO2 filter on pure water tank air intake	anodic separator tank	Ion exchange resin in closed water loop	PEM membrane (low cross over through the membrane)		1	1		
	Carbon monoxide	0.2	Not expected to be present.					0	0	2	
	Methane (CH4)	100	Not expected to be present.					0	0	1	
	Water		reactant> permeation through PEM membrane due to electro-osmosis + H2 water saturated at 60°C TSA malfunction	TSA dryer	DP Analysis + trip at xx ppm at TSA outlet xx <5 ppm	Gas production temporary vented after restart for certain period of time (factory setting)		2	2	4	
	Total sulphur compounds	0.004	Materials gaskets, valve seats releasing ppb level of sulfur compound	Material specifications				0	0	4	
	Ammonia	0.1	from tap water at anodic side	Reverse osmosis purification unit	PEM membrane (no transfer through the membrane)			0	0	4	
	Total hydrocarbons	2	Not expected to be present.					0	0	4	
	Formaldehyde	0.01	Not expected to be present.					0	0	2	
	Formic acid	0.2	Not expected to be present.					0	0	2	
	Helium	300	Not expected to be present.					0	0	0	
.[Halogenated compounds	0.05	from tap water at anodic side	Reverse osmosis purification unit				0	0	4	

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

2 – PEM Electrolysis + TSA

Impurities occurrence class

Occurrence class for each impurities

- Occurrence class 4 (highest probability) :
- Occurrence class 3 :
- Occurrence class 2: N2, O2, H2O
- Occurrence class 1: CO2
- Occurrence class 0 (never observed): Ar, CO, CH4, He, halogenated products, formaldehyde, formic acid, THC, ammonia, sulfur compounds

THIS DOCUMENT IS • Public

Date 2018-11-08

arré (Air Liquide)

2 – PEM Electrolysis + TSA Analytical campaign

ELYTE E12-15 PEM electrolyzer

- H2 flow rate: 12 Nm³/h
- Operating pressure:
 - H₂: 15 bar
 - O₂: 14 bar
- Operating temperature: 60°C
- TSA purification unit
 - H₂: 99,998%
 - O₂ < 10 ppm
 - $H_2O < 10 \text{ ppm}$

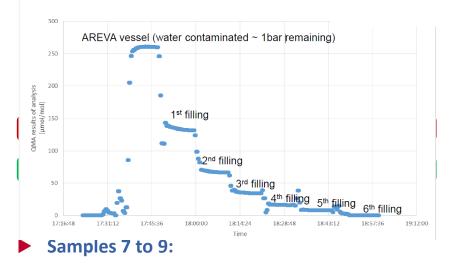
THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

2 – PEM Electrolysis + TSA H₂ analysis before purification

			Sam	pies 1 to 3	5 : Defore H
				anded uncertainty <=2)	
	Compounds	Unit	Sample 4-1	Sample 4-2	NMIs
	со	µmol/mol	< 0.01	< 0.01	NPL
	CO ₂	µmol/mol	< 5	< 5	SP
	CO ₂	µmol/mol	0.240 ± 0.012	0.221 ± 0.011	NPL
	CH4	µmol/mol	0.091 ± 0.007	0.086 ± 0.008	NPL
	Non methane hydrocarbons	µmol/mol	< 0.01	< 0.01	NPL
	H ₂ O	µmol/mol	> 100	> 100	NPL
	Total sulphur compounds	µmol/mol	< 0.0036	< 0.0036	NPL
	n	umol/mol	Not analysed	Not analysed	CEM
	O ₂ + Ar	µmol/mol	< 25	< 30	SP
L	02	µmol/mol	20.9 ± 3.0	23.3 ± 3.8	NPL
	N ₂	µmol/mol	< 90	< 130	SP
		µmol/mol	Not analysed	Not analysed	CEM
	N ₂	µmol/mol	< 1.2	< 1.2	NPL
	Ar	µmol/mol	Not analysed	Not analysed	CEM
	Ar	µmol/mol	< 0.5	< 0.5	NPL
	Total halogenated (HCI)	µmol/mol			VSL
	CH2O	µmol/mol			VSL
	CH2O2	µmol/mol			VSL
	NH3	µmol/mol			VSL
lic	Не	µmol/mol	< DL	< DL	CEM

Samples 1 to 3 : before H2 purification unit


- Water saturated samples (DP= 7°C / 15 bar)
- Low O₂ content (stability?)

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

Samples 4 to 6: O2 content in accordance with specification but high water content

- H₂O content in accordance with specification < 2 ppm
- O₂ content in accordance with specification < 5 ppm

THIS DOCUMENT IS • Public

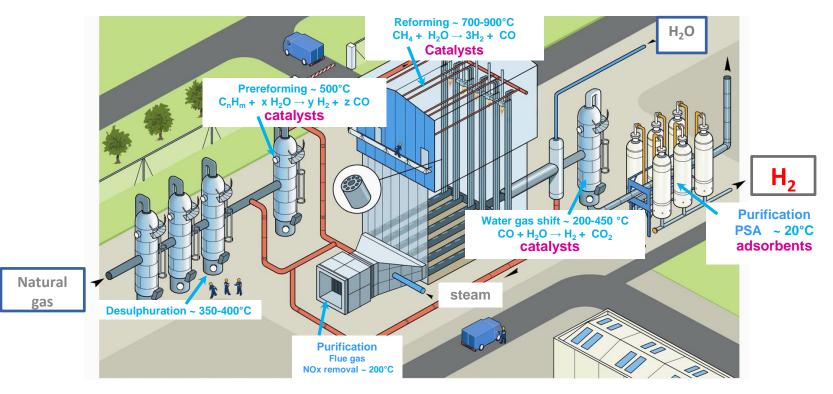
Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEI

2 – PEM Electrolysis + TSA

H₂ analysis after purification

Samples 7 to 9 : after TSA purification unit

		Results with			
		uncertair	nty (k=2)		
Compounds	Unit	Sample 4-1	Sample 4-2	Sample 3	NMIs
со	µmol/mol	< 0.02	< 0.02	< 0.02	NPL
CO2	µmol/mol	< 5	n.a.	< 5	RISE
CO2	µmol/mol	< 0.01	< <mark>0.01</mark>	< 0.01	NPL
CH4	µmol/mol	< 0.01	< 0.01	< 0.01	NPL
Non methane hydrocarbons	µmol/mol	0.156 ± 0.030	0.126 ± 0.026	0.111 ± 0.024	NPL
H₂O	µmol/mol	< 0.8	< 1.2	< 3	NPL
Total sulphur compounds	µmol/mol	< 0.0030	< 0.0030	< 0.0030	NPL
02	µmol/mol	< 5	n.m.	< 5	CEM
O ₂ + Ar	µmol/mol	< 25	n.a.	< 25	RISE
0,	umol/mol	1.39 ± 0.36	< 0.5	1.59 ± 0.45	NPL
N ₂	µmol/mol	< 100	n.a.	< 100	RISE
N ₂	µmol/mol	< 80	n.m.	n.m.	CEM
N ₂	µmol/mol	1.51 ± 0.2	< 1.0	1.86 ± 0.2	NPL
Ar	µmol/mol	< 80	n.m.	n.m.	CEM
Ar	µmol/mol	< 0.5	< 0.5	< 0.5	NPL
Total halogenated (HCI)	µmol/mol	n.a.	< 0.005	< 0.005	VSL
CH2O	µmol/mol	< 0.005	< 0.005	< 0.005	VSL
CH2O2	µmol/mol	< 0.1	< 0.1	< 0.1	VSL
NH3	µmol/mol	n.a.	n.a.	n.a.	VSL
He	µmol/mol	< 9	< 9	< 9	CEM


Steam Methane Reforming + PSA

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

3 – Steam Methane Reforming

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

3 – Steam Methane Reforming

PSA technology:

- Based on adsorbent technology:
 - Multiple adsorbents: silica, alumina molecular sieves, activated carbons.
 - Adsorb different kind of gases
- Better quality of H2 is produced compared to other purifications process

(between 99% to 99.9%)

RELATIVE STRENGTH OF ADSORPTION

+ ++		+++	++++
Не	Ar	СО	C ₃ H ₆
H ₂	O ₂	CH₄	C₄H ₈
	N 2	CO ₂	C5 +
Alun	nina	C ₂ H ₆	H ₂ S
or Carbon i Activated	Carbon Prefilter		NH ₃
Activated	Carbon	C ₃ H ₈	H ₂ O
+ Molecula	ar Sieve		

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN

Air Liquide AREVA H₂Gen

THIS DOCUMENT

3 – Steam Methane Reforming

Contaminant	Threshold	Causes possible For the source studied	Existing barriers					
Inert gases : N2	100	Present in Nat gas and Syngas PSA malfunction	PSA	Double analysis + trip at xx ppm at PSA outlet xx<100 ppm				
Inert Gas Ar	10	Only ATR and POx Present in O2 typical 0,6% in Syngas	PSA. Not sized to remove Argon. Argon content may be					
Oxygen	5	Not present in Syngaz Oxygen is unstable in the condition of reforming and	PSA cannot be used with significant O2 content for safety reasons					
Carbon dioxide	2	Present in Syngas (%)	PSA Adsorption strength of MS, Activated carbon, Silicagel					
Carbon monoxide	0,2	Normal operation below threshold. Occasional peaks at ppm level	Double analysis + trip at xx ppm at PSA outlet (xx<10)					
Methane (CH4)	100	Present in Syngas at % level	In most cases CO is sizing the PSA, therefore CO<10ppm ==> CH4 < xx					
Water	5	Syn gas saturated in H2O	PSA Adsorbed in Alumina and MS Adsorption strngth					
Total sulphured components	0,004	Sulfur from Nat Gas	Desulfuration upstream reformer (typical values) Normal < 10 ppb	Prereformer Catalyst poisoning by sulfur irreversible	Reformer Catalyst poisoning by sulfur irreversible	Shift Catalyst poisoning by sulfur irreversible	PSA Adsorption of H2S before CO,	H2S Adsorptio in pipe and vessels
Ammonia	0,1	Traces present in Syngas.	PSA. Adsorption strength of Alumina, MS Higher than					
Total hydrocarbons	2	Traces of C2+ after reforming reaction	PSA C2 C3, C4, C5+ adsorbed by Activated Carbon layer					
Formaldehyde	0,01	ldem Acide Formique Arreté par PSA	PSA. Adsorption strength of Alumina, MS Higher than					
Formic acid	0,2	May be present in Syngas essentially liquid	PSA. Formic Adsorption strength of Alumina, MS Higher than					
Halogenated compounds	0,05	Present in Nat Gas?	Any CI present in Nat gas would be stopped by HDS	Prereformer Catalyst poisoning by Cl irreversible	Reformer Catalyst poisoning by Cl irreversible	Shift Catalyst poisoning by Cl irreversible	PSA Adsorption of Cl before CO, CO2,	
Helium •Public	300	Not present in Nat Gas in N Europe (<10 ppm) Passes through the whole						

3 – Steam Methane Reforming

Occurrence class	impurities
4	СО
3	N ₂
2	Ar, CH4
1	Formaldehyde
0	CO2, He, H2O, halogenated products, formic acid, THC, ammonia, sulfur compounds

THIS DOCUMENT IS • Public

Risk assessment of impurities in Hydrogen

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

Air Liquide AREVA H₂Gen

3 – Steam Methane Reforming

		Results with expanded uncertainty
Compounds	Unit	(number of different samples: 3 and
		<i>k</i> =2)
со	µmol/mol	< 0.01
CO ₂	µmol/mol	< 0.01
CH₄	µmol/mol	< 0.01
Non methane hydrocarbons	µmol/mol	< 0.01
H ₂ O	µmol/mol	< 0.5
Total sulphur compounds	µmol/mol	< 0.0036
0 ₂	µmol/mol	< 0.5
N ₂	µmol/mol	< 1.2
Ar	µmol/mol	< 0.5
Total halogenated (HCI)	µmol/mol	< 0.005
СН2О	µmol/mol	< 0.005
CH2O2	µmol/mol	< 0.1
NH3	µmol/mol	< 0.1
Не	µmol/mol	< 50
		Results with expanded uncertainty
Compounds	Unit	(number of different samples: 3
		and <i>k</i> =2)
C2 hydrocarbons	µmol/mol	< 0.5
C3-hydrocarbons	µmol/mol	<1
C4-hydrocarbons	µmol/mol	<1
C5-hydrocarbons	µmol/mol	<1
C6 – C18 hydrocarbons	µmol/mol	<0.05

For all the samples taken at SMR + PSA process:

 \rightarrow all impurities are below the detection limit of analytical methods

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

Conclusion

THIS DOCUMENT IS • Public

Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)

4 – Conclusion

□ The main impurities are identified for both PEM electrolysis and SMR processes

The analysis of samples from PEM electrolyzer and SMR confirmed the risk assessment

Appropriate actions and barriers can be added to reduce the risk if necessary

THIS DOCUMENT IS • Public

4 – Conclusion

For more details, see the publication:

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2018) 1-12

Probability of occurrence of ISO 14687-2 contaminants in hydrogen: Principles and examples from steam methane reforming and electrolysis (water and chlor-alkali) production processes model

Thomas Bacquart ^{a,*}, Arul Murugan ^a, Martine Carré ^b, Bruno Gozlan ^b, Fabien Auprêtre ^c, Frédérique Haloua ^d, Thor A. Aarhaug ^e

THIS DOCUMENT IS • Public

Date 2018-11-08

Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN

Thank you for your attention

THIS DOCUMENT IS • Public

 24
 Date 2018-11-08 Martine Carré (Air Liquide) - Fabien Auprête (AH2GEN)