

## PEM fuel cell performance in presence of trace concentrations of HCl and C4Cl4F6 in hydrogen under automotive load cycling

I. Profatilova<sup>1</sup>, P.-A. Jacques<sup>1</sup>, F. Fouda-Onana<sup>1</sup>, M. Heitzmann<sup>1</sup>, A. Rojo Esteban<sup>2</sup>, T. Bacquart<sup>3</sup> <sup>1</sup> CEA-LITEN, 17 rue des Martyrs, 38054 Grenoble Cedex, France

<sup>2</sup> CEM Spanish Metrology Center, C/Alfar, 2. 28760 Tres Cantos, Madrid, Spain
<sup>3</sup> National Physical Laboratory, Hampton Rd, Teddington, Middlesex, UK

## irina.profatilova@cea.fr

**Keywords:** polymer electrolyte membrane fuel cell, degradation, chlorofluorocarbons, hydrochloric acid, NEDC cycling, hydrogen fuel impurities.

Polymer electrolyte fuel cell (PEM FC) is a promising energy conversion tool to be used in zero-emissions vehicles. The quality of hydrogen fuel have a direct impact on its cost and on a FC performance. The impact of halogen-containing compounds on a long-term performance of PEM FC is poorly investigated in case of hydrochloric acid [1] and there is no literature data on 1,2,3,4-tetrachloro-1,1,2,3,4,4-hexafluorobutane (C<sub>4</sub>Cl<sub>4</sub>F<sub>6</sub>). The latter molecule was found in few hydrogen fuel samples from hydrogen refueling stations [2]. Therefore, investigation and understanding of possible impact of halogen-containing compounds on the performance of PEMFC is of high fundamental and practical interest.

In the present work the effect of 0.2 ppm of HCl and 0.2 ppm of  $C_4Cl_4F_6$  in hydrogen fuel on a single cell performance was investigated. Complex test protocol included 2 constant load steps (0.6 A/cm<sup>2</sup>) and 2 New European Driving Cycling (NEDC) steps with total duration of 1000 h. Figure 1 shows voltage degradation extracted from NEDC profiles at 0.6 A/cm<sup>2</sup> for the cells tested with pure and contaminated hydrogen.

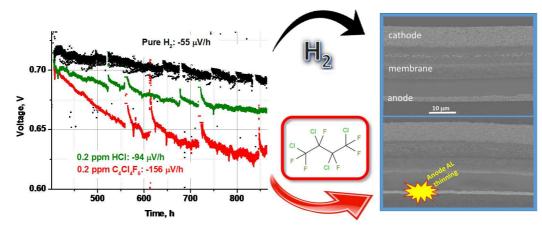



Figure 1: Voltage profiles and associated degradation rates for FC tested at 0.6 A/cm<sup>2</sup> in pure  $H_2$  (black),  $H_2 + 0.2$  ppm HCl (green) and  $H_2 + C_4Cl_4F_6$  (red) on the left; SEM cross-section images for the cells after 1000 h operation in pure  $H_2$  and  $H_2 + 0.2$  ppm  $C_4Cl_4F_6$  on the right.

Elevated reversible and irreversible voltage decay rates were observed in presence of impurities.  $C_4Cl_4F_6$  provoked the most important FC performance degradation. Advanced electrochemical *in-situ* diagnostics, *ex-situ* microscopy observations together with other analytical techniques allowed to discover the causes for accelerated performance failure in presence of halogen-containing impurities in hydrogen.

## Acknowledgements

The research leading to these results has received funding from the in-progress Joint Research Project «Metrology for sustainable hydrogen energy applications» supported by the European Metrology Programme for Innovation and Research (EMPIR). The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

## REFERENCES

- 1. V. Stamenkovic, N. M. Markovic, P.N. Ross, J. Electroanal. Chem, 500, 44-51 (2001)
- 2. J.P. Hsu, Int. J. Hydrogen Energy, 37, 1770-1780 (2012); T. Aarhaug, M. Reinkainen, F. Defoort, HyCoRA
  - Hydrogen Contaminant Risk Assessment Grant agreement no: 621223, Deliverable 2.3.