DE LA RECHERCHE À L'INDUSTRIE

The impact of trace amounts of NH_3 , HCI and $C_4CI_4F_6$ in hydrogen on FC performance

I. Profatilova¹, F. Fouda-Onana¹, M. Heitzmann¹,
T. Bacquart³, A. Rojo Esteban², P.-A. Jacques¹

 ¹Atomic Energy and Alternative Energies Commission (CEA), LITEN, Grenoble, France
²CEM Spanish Metrology Center, Madrid, Spain
³National Physical Laboratory, Teddington, UK

HYDROGEN project: Final meeting 21st May, 2019

www.cea.fr

The following impurities in H_2 were investigated: NH_3 , HCL and $C_4CI_4F_6$.

Present requirements for H₂ quality ISO/DIS 14687:2018(E):

→Total halogenated compounds content is <0.05 µmol/mol (halogen ion equivalent, all halogenated compounds which could potentially be in the hydrogen gas) →NH₃ is <0.1 µmol/mol

Possible sources of NH_3 , HCI and $C_4CI_4F_6$ for fuel cells:

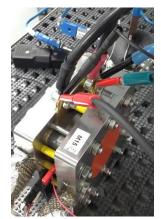
- \rightarrow From ambient air (cross-over from the cathode side)
- \rightarrow H₂ production: chlor-alkali plants (in case of failure of purification)
- → $C_4Cl_4F_6$ was found in H_2 from refueling station (*Int. J. Hydrogen Energy* 37 (2012) 1770 and HyCoRa project results (2015-2017).

NH₃ and HCI in trace concentrations on FC performance are poorly investigated especially over long term

No available data in literature regarding the inpact of C₄Cl₄F₆ on FC performance.

ISO 14687-2; O.A. Baturina et al., J. Electrochem. Soc. 161 (2014) F365.

ten

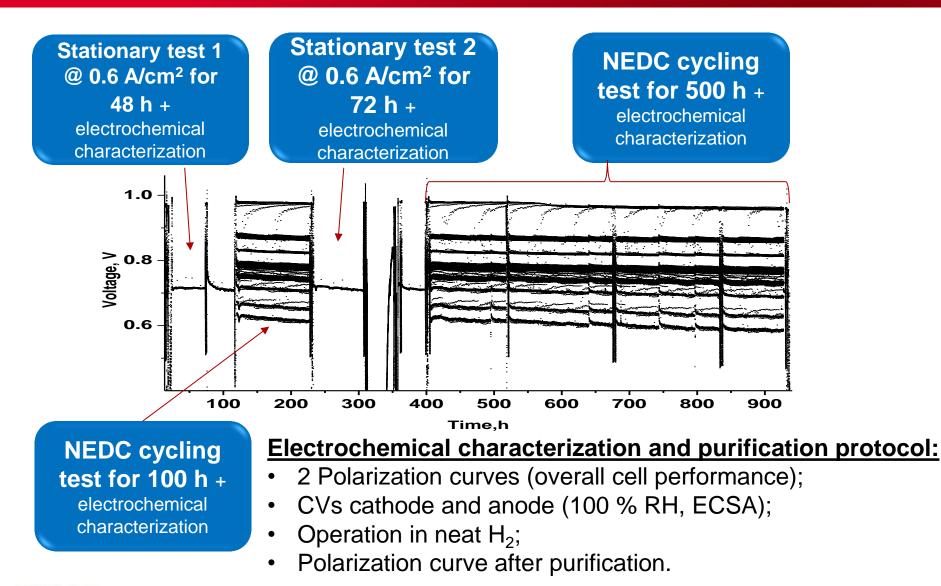

- Understand and quantify the impact of low concentrations of NH₃, HCl and C₄Cl₄F₆ in fuel on PEM FC performance under dynamic automotive load cycling;
- Propose a mechanism for PEMFC components degradation in presence of the impurities;
- Give recommendations to ISO on acceptable concentrations of the three impurities in H₂ for PEMFC.

DE LA RECHERCHE À L'INDUSTR

Single cell tests: Experimental setup

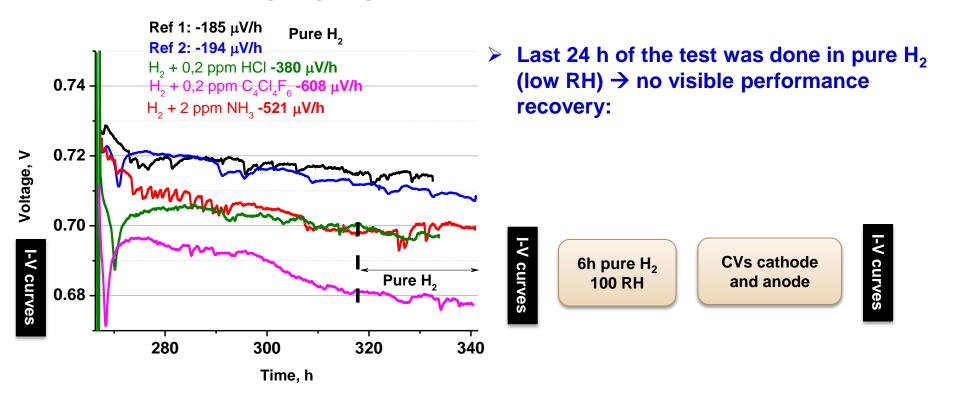
25 cm² single cell Test bench with sulfinert pipes

MEA characteristics			
Anode Pt loading, mg/cm ²	0.11		
Cathode Pt loading, mg/cm ²	0.34		
Membrane	Gore		
Fuel used	H_2 pure (ref), H_2 + 2 ppm NH ₃ H_2 +0,2 ppm HCI H_2 + 0,2 ppm C ₄ CI ₄ F ₆		


European harmonized FC automotive conditions :

	Parameters	Symbol	Unit	Values
	Nominal cell operating temperature	T.Si,CL	°C	80
ANODE	Fuel gas inlet temperature	T.Si.A	°C	85
		RH.Si.A	% RH	50
	Fuel gas inlet humidity	DPT.Si.A	°C	64 @80℃
	Fuel gas inlet pressure (absolute)	p.Si.A	kPa	250
	Fuel gas composition	Conc.Si.A.H2, Conc.Si.A.GasX		According to H ₂ 5.0 quality
	Fuel stoichiometry	Stoic.Si.A	-	1.3
CATHODE	Oxidant gas inlet temperature	T.SI.C	°C	85
		RH.Si.C	% RH	30
	Oxidant gas inlet humidity	DPT.SI.C	°C	53 @80℃
	Oxidant gas inlet pressure (absolute)	p.Si.C kPa		230
	Oxidant	Conc.Si.C.O2, Conc.Si.C.GasX	-	According to ISO 8573-1:2010
	Air stoichiometry	Stoic.Si.C	-	1.5
	Minimum current density for stoichiometry operation	I.S.MinGasFlow	A/cm ²	0.2

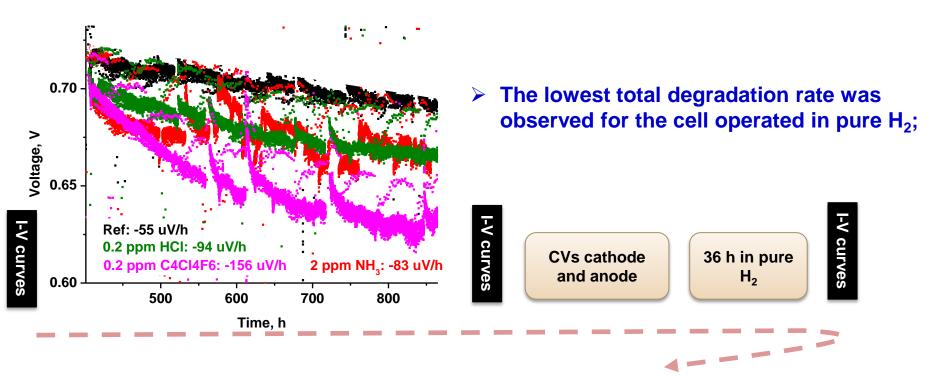
doi:10.2790/54653


EXAMPLE OF VOLTAGE PROFILE FOR REFERENCE TEST

STATIONARY 2 PHASE VOLTAGE PROFILES

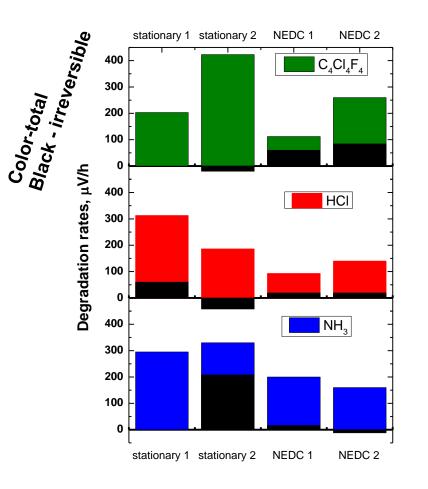
0.6 A/cm² voltage ageing profile

Non-recoverable degradation rate estimation via polarization curves

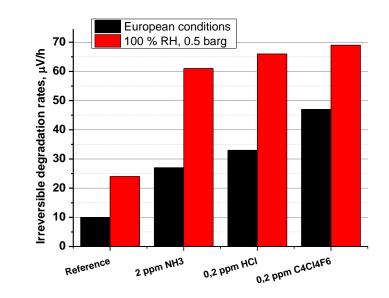

Irina Profatilova – 21st May 2019, HYDROGEN final meeting, Delft, Netherlands

Cea NEDC TEST FOR 500 H

Extracted at 0.6 A/cm² from NEDC profile


Non-recoverable degradation rate estimation

	Reference	0,2 ppm HCl	0,2 ppm C ₄ Cl ₄ F ₆
Irrevers. degradation rate @ 0.6 A/cm ² , μV/h	-19	-38	-103



Cera IMPURITY-INDUCED VOLTAGE DEGRADATION Hydrogen

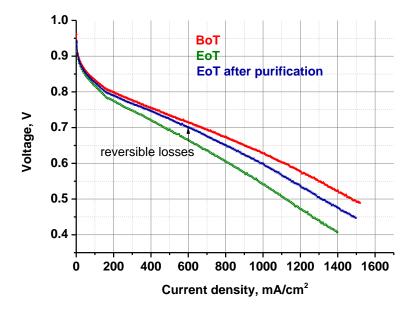
Performance degradation induced by impurities in H_2 in 50-h time scale

Irrecoverable performance degradation in H_2 in 900-h time scale @0,6 A/cm²

- Less impact of contaminants on FC under dynamic load compared to stationary operation;
- > The largest part of losses is recoverable;
- C₄Cl₄F₆ gave the highest FC degradation at a long-term test.

EFFICIENCY OF CLEANING TECHNIQUES

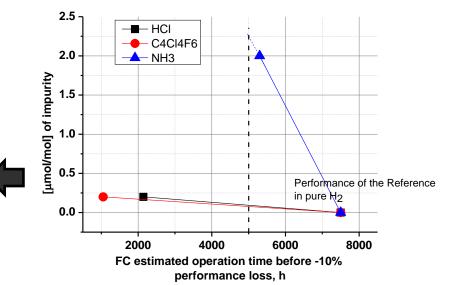
Technique	Impact on FC performance	
2-3 polarisation curves	More impact in case of halogenated impurities	
CVs	Small effect	
Operation in pure H ₂ low RH (24-30 h)	Low impact	
Operation in pure H ₂ 100 % RH (6-40 h)	The highest performance recovery, but no total recuperation. More efficient for NH_3 compared to pol. curves	\checkmark


Calculations of acceptable impurities concentrations in H₂

H₂ IMPURITY CONTENT THRESHOLD CALCULATIONS

Calculations are done based on the polarization curves taken at BoT and EoT (after purification: operation in pure H₂ 40h and CVs) @ 0.6 A/cm². DOE Technical target 2020: 5000 h with <10% rated power loss.

Example of polarization curves for H_2 + 2 ppm NH_3


Simple linear extrapolation of the impurity concentrations to 5000h.

Very approximate method

-1.8% performance loss in 954h -10% loss in 5300h if linear.

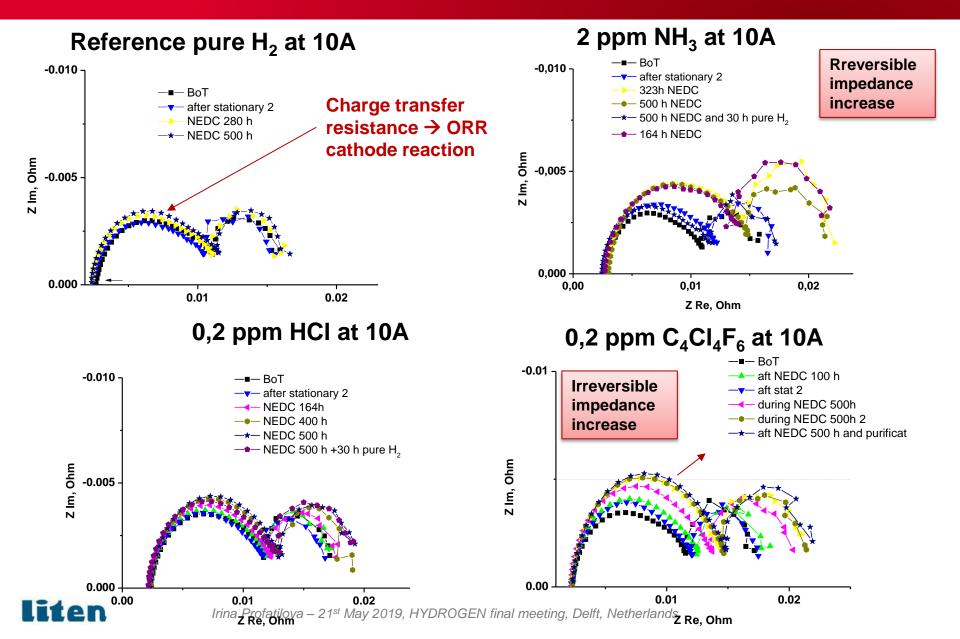
Hydrûgen

Calculation of impurity content threshold based on linear degradation rate assumption

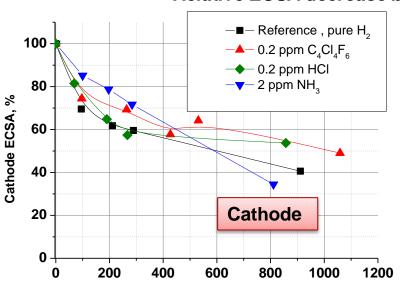
C22 THRESHOLDS FOR IMPURITIES CONTENT IN H₂ Hydrôgen

Impurity in H ₂	[μmol/mol], taken for study in FC	Threshold calculated, [µmol/mol]	ISO14687-2 threshold value, [µmol/mol]
NH ₃	2	0.9 (2.3*)	0.1
HCI	0.2	0.09	0.05
$C_4CI_4F_6$	0.2	0.08	0.005

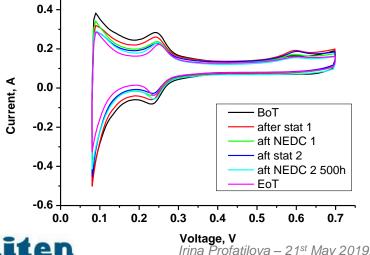
* 2.3 value was obtained using FC voltage recovery after operation in pure H_2 . It reflects partial reversibility of NH_3 impact on FC performance.

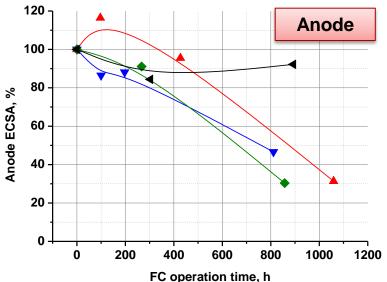

The actual threshold for ammonia might be relaxed to 0.5 μ mol/mol;

Existing threshold for total halogenated compounds 0.05 μmol/mol is reasonable. Need more investigation on the halocarbons decomposition on Pt under PEMFC operating conditions.


IN-SITU ELECTROCHEMICAL DIAGNOSTICS BY IMPEDANCE SPECTROSCOPY

Hydr**ó**gen




IN-SITU ELECTROCHEMICAL DIAGNOSTICS BY CYCLIC VOLTAMMETRY

Relative ECSA decrease between BoT and EoT

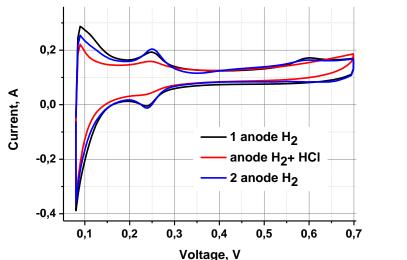
Cathode CVs for the $Cell^{Time}_{cell}$ tested with $C_4Cl_4F_6$

Hydrûgen

- Similar cathode ECSA degradation for all cells;
- Anode ECSA is more affected by the presence of impurities;
- No direct correlation between ECSA for the electrodes and cell degradation rates.

□ Chloride ions adsorption is increasing with electrode potential (0.2 → 0.7 V vs RHE);

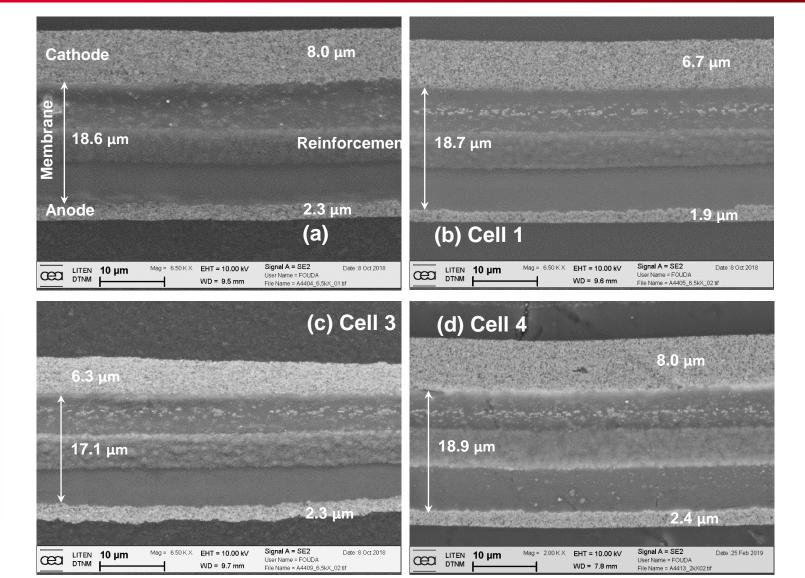
- They are responsible for inhibiting the ORR;
- Chloroplatinate ions can be generated electrochemically or chemically:


Pt + 6Cl⁻ \rightarrow PtCl₆²⁻ + 4e⁻, E⁰ = 0,742 V vs SHE

Generated chloroplatinate ions promote growth of Pt particles. Cathode CVs taken with H_2 and H_2 +HCl supplied on the anode

Baturina O. et al, J. Electrochem. Soc., 161 (2014) F365.

FC POISONING BY HCL: MECHANISM CONSIDERATIONS

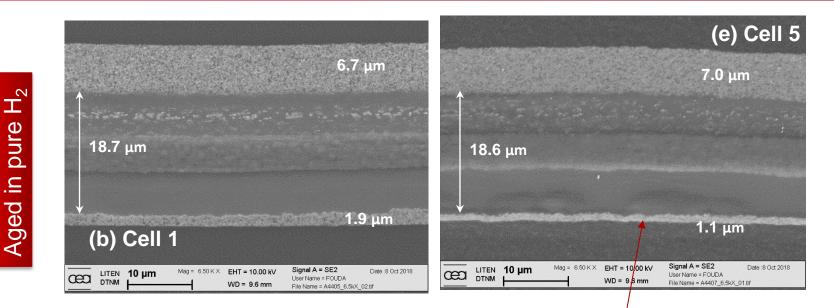

SEM MICROSCOPY ANALYSIS

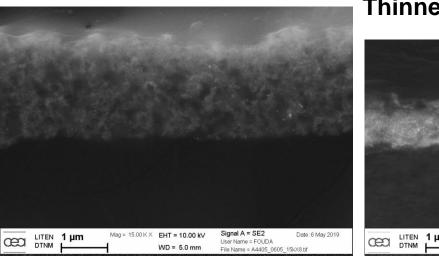
Hydrøgen

Aged in

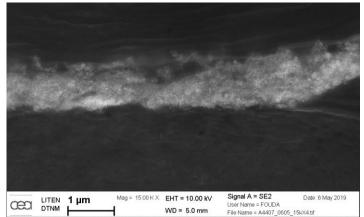
pure H₂

Aged in H₂ + HCI

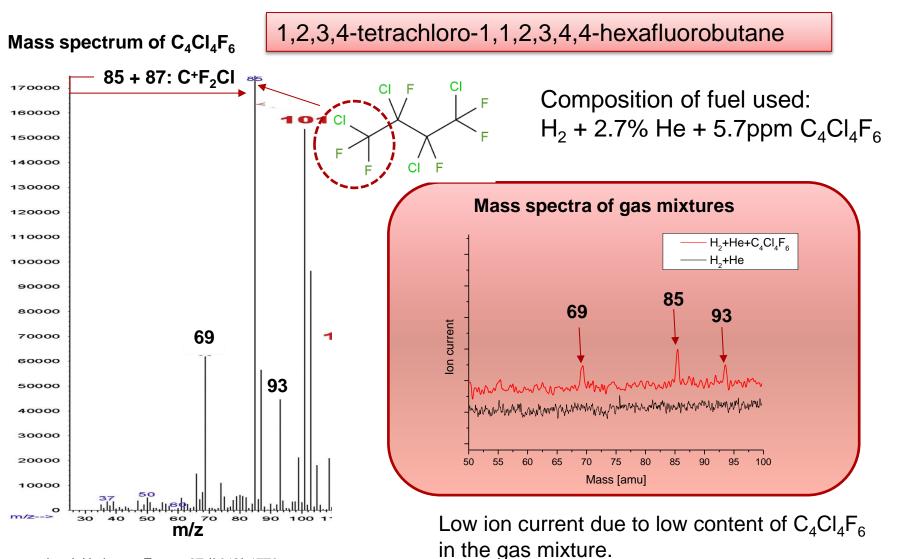

Pristine


Aged in H_2 + NH₃

liten


SEM OBSERVATIONS OF MEAs

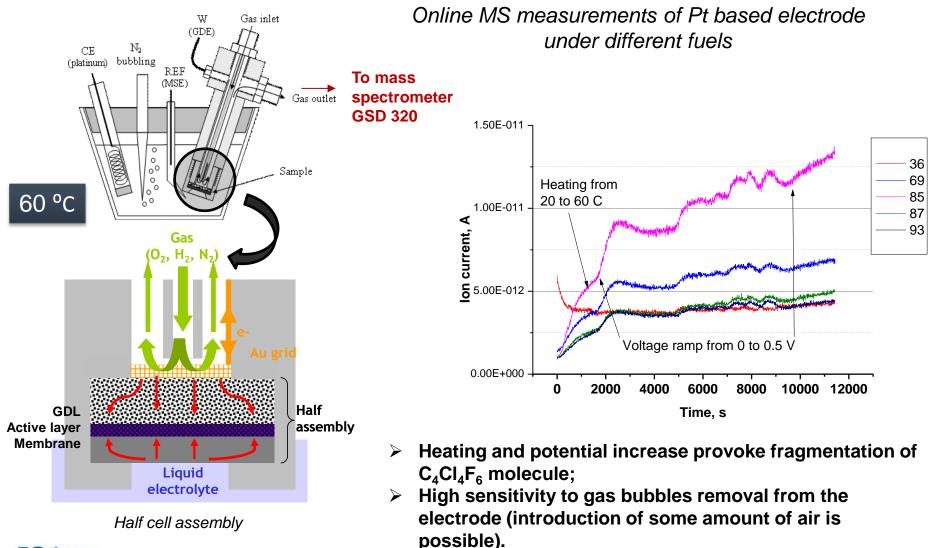
Hydrøgen


Thinner and denser anode active layer

DE LA RECHERCHE À L'INDUSTRI

MASS SPECTROMETRY OF C₄CL₄F₆

Int. J. Hydrogen Energy 37 (2012) 1770

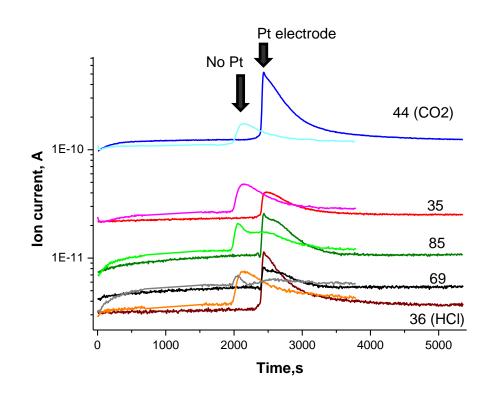


Irina Profatilova – 21st May 2019, HYDROGEN final meeting, Delft, Netherlands

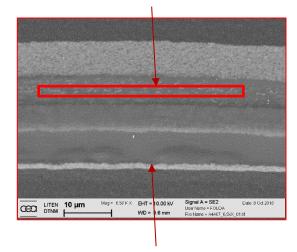
$\begin{array}{c} \label{eq:half-cell} \mbox{HALF-CELL-STUDY-OF-THE-IMPACT-OF} \\ C_4 CL_4 F_6 \end{array}$

3-electrode cell with gas-diffusion WE

ten



Irina Profatilova – 21st May 2019, HYDROGEN final meeting, Delft, Netherlands


$\begin{array}{c} \label{eq:half-cell} \mbox{HALF-CELL-STUDY-OF-THE-IMPACT-OF} \\ \mbox{C}_4 \mbox{CL}_4 \mbox{F}_6 \end{array}$

Hydrøgen

60 °C, 0V vs RHE, H_2 + 5 ppm $C_4Cl_4F_6$ supply either to membrane or to platinum electrode coated onto membrane. Peaks correspond to 1 ml air injection.

Co-existence of O_2 , $H_2 + C_4 Cl_4 F_6$ via crossover and Pt particles in the membrane \rightarrow oxidative decomposition of halocarbon.

Adsorption and partial reductive decomposition of C₄Cl₄F₆ is highly possible.

- > $C_4Cl_4F_6$ reacts with air (O_2) in the MS chamber;
- > In presence of Pt electrode the proportion of reaction products is changed \rightarrow indirect evidence of C₄Cl₄F₆ decomposition on Pt electrode.

$\underbrace{\mathsf{FC}}_{\mathsf{CONSIDERATIONS}} \mathsf{FC} \operatorname{POISONING}_{\mathsf{F}_4} \mathsf{CL}_4 \mathsf{F}_6 : \mathsf{MECHANISM}_{\mathsf{CONSIDERATIONS}}$

Hydrøgen

- Halogenated hydrocarbons (CFCl₃, CH₃Cl, CH₂Cl₂, CCl₄, CH₃-CCl₃, etc.) behavior on Pt electrode at low T includes:
 - Adsorbtion on Pt at low potentials ~0.2 V vs RHE
 - Partial reductive desorption/dehalogenation with the formation of saturated alkanes
 - Oxidative decomposition with a formation of HCl and CO_2 (>0.5 V vs RHE).

U. Muller et al. Electrochim. Acta 42 (1997) p. 2499; K.C. McGee et al., J. Electrocatal., 157 (1995) p. 730; B. Bansch et al., Electrochim. Acta, 33 (1988) p. 1479; H. Baltruschat et al., Electrochim. Acta, 38 (1993) p. 281.

\Box According to our data, $C_4Cl_4F_6$ behavior in fuel cell includes:

- Adsorption at low potentials is likely
- Overpotential creation for HOR and carbon corrosion
- Crossover to cathode side, HCI formation and increase in cathode charge transfer resistance via CI⁻ adsorption
- Pt dissolution and electrode thinning.

DE LA RECHERCHE À L'INDUSTRI

 \succ

 \geq

 \succ

Hydr**ó**gen

- The negative impact of trace concentration of NH₃, HCl and C₄Cl₄F₆ on a long term performance od PEMFC under mixed stationary and dynamic protocol was investigated and quantified;
- NH₃, HCI and C₄Cl₄F₆ provoke irreversible performance losses of ~17-37 μ V/h at 0.6 A/cm² after 900h of the test (not acceptable);
- C₄Cl₄F₆ exposure resulted in the highest reversible and irrecoverable FC performance losses;
- The existing value for acceptable NH₃ concentration can be relaxed based on the results obtained while that one for halogenated compounds seems to be consistent;
- SEM and online MS investigation showed possibility of C₄Cl₄F₆ decomposition on Pt electrode leading to the active layer thinning and performance failure;
- More study on the behavior of organic halogenated compounds under FC conditions is necessary.

DE LA RECHERCHE À L'INDUSTR

ACKNOWLEDGEMENTS

Hydrøgen

The research leading to these results has received funding from the in-progress Joint Research Project « Metrology for sustainable hydrogen energy applications » supported by the European Metrology Programme for Innovation and Research (EMPIR). The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States.

Irina.profatilova@cea.fr

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

