

EBMs Validation

Experimental design

- Two methods implying the same sample preparation procedure combined to two different bioassays (i.e. ERα-CALUX and A-YES) were optimized and validated within the Project.
- A method validation experimental design was planned in accordance with CEN/TS 16800:2020 to improve the comparability of estrogen measurements.
- The methods performance characteristics were assessed by analyses on six matrices at three different concentrations level each (i.e. low, medium and high concentration) spiked with the targeted estrogens (i.e. b-E2, a-E2, a-EE2, E1, E3).

Samples scheme

Batch	Matrix	EDC (ng/L)	Performance Characteristic
0	Calibration verification	Calibration Solutions (8 solutions measured in triplicate) obtained by CRMs dilution 1st Verification Calibration Solution corresponding to approximately EC50. 2nd Verification Calibration Solution corresponding to approximately the highest calibration level.	Calibration verification
		EVIAN water as Procedural Blank EVIAN + DOC 1 mg/L without the addition	reagents check
	1 EVIAN+DOC 1 mg/L	of hormones	"Background"
		*Milli-Q + 10 LOQ-V E2 eq	Matrix Effect
1	EVIAN+DOC 1 mg/L	*EVIAN +DOC 1 mg/L + 10 LOQ-V E2 eq +interferents	Interferents effect
	0.	EVIAN +DOC 1 mg/L +10 LOQ-V E2 eq	Precision, Trueness, LOQ_v
		EVIAN +DOC 1 mg/L + 3LOQ-V E2 eq	Precision, Trueness
		EVIAN +DOC 1 mg/L + 10 LOQ-V E2 eq	Precision, Trueness, DOC effect
		EVIAN water as Procedural Blank	reagents check
		of hormones	"Background"
		*Milli-Q + 10 LOQ-V E2 eq	Matrix Effect
		*EVIAN +DOC 7 mg/L + 10 LOQ-V E2 eq +interferents	Interferents effect
2	EVIAN+DOC 7 mg/L	EVIAN +DOC 7 mg/L +LOQ-V E2 eq	Precision, Trueness, LOQV
		EVIAN +DOC 7 mg/L + 3 LOQ-V E2 eq	Precision, Trueness
		EVIAN +DOC 7 mg/L + 10 LOQ-V E2 eq	Precision, Trueness, DOC effect
		EVIAN + DOC 14 mg/L without the addition of hormones	"Background" in DOC effect
		EVIAN +DOC 14 mg/L + 10 LOQ-V E2 eq	DOC effect

Batch	Matrix	EDC (ng/L)	Performance Characteristic
		EVIAN water as Procedural Blank	reagents check
		EVIAN + DOC 7 mg/L +TSS without the addition of hormones	"Background"
	EVIAN+DOC 7	*Milli-Q + 10 LOQ-V E2 eq	Matrix Effect
3	mg/L + TSS 50 mg/L	*EVIAN +DOC 7 mg/L + TSS + 10 LOQ-V E2 eq +interferents	Interferents effect
		EVIAN +DOC 7 mg/L + TSS + LOQ-V E2 eq	Precision, Trueness, LOQ _v
		EVIAN +DOC 7 mg/L + TSS + 3LOQ-V E2 eq	Precision, Trueness
		EVIAN +DOC 7 mg/L +TSS + 10LOQ-V E2 eq	Precision, Trueness
		EVIAN water as Procedural Blank	reagents check
	1st Natural/syntetic	Natural sample without the addition of hormones	"Background"
	sample spiked at	*Milli-Q + 10 LOQ-V E2 eq	Matrix Effect
4	4 three different	*Natural sample + 10 LOQ E2-V eq + interferents	Interferents effect
	concentration	EDC at LOQ E2-V eq	Precision, Trueness, LOQV
	(partner choice)	EDC at 3 LOQ E2-V eq	Precision, Trueness
		EDC at 10 LOQ E2-V eq	Precision, Trueness
		EVIAN water as Procedural Blank	reagents check
	2nd Natural/syntetic	Natural sample without the addition of hormones	"Background"
_	sample spiked at	*Milli-Q + 10 LOQ E2 eq	Matrix Effect
5	three different	*Natural sample + 10 LOQ E2 eq + interferents	Interferents effect
	concentration	EDC at LOQ level each	Precision, Trueness, LOQ _v
	(partner choice)	EDC at 3 LOQ level each	Precision, Trueness
		EDC at 10 LOQ level each	Precision, Trueness
		EVIAN water as Procedural Blank	reagents check
	3rd Natural/syntetic	Natural sample without the addition of hormones	"Background"
	sample spiked at	*Milli-Q + 10 LOQ E2 eq	Matrix Effect
6	three different	*Natural sample + 10 LOQ E2 eq + interferents	Interferents effect
	concentration	EDC at LOQ level each	Precision, Trueness, LOQV
	(partner choice)	EDC at 3 LOQ level each	Precision, Trueness
		EDC at 10 LOQ level each	Precision, Trueness

EDC 🛞 WFD

22nd February 2023

Fitting: Graph-Pad Prism 9.0 (1)

22nd February 2023

Fitting: Graph-Pad Prism 9.0 (2)

ERα-CALUX calibration

- 8 levels measured in triplicate
- Calibration range in wells (ng/L): 0.0028 ng/L-170 ng/L with 0.1% of DMSO

A-YES calibration levels in wells

- 7 levels measured in triplicate
- Calibration range in wells (ng/L): 0.0009 ng/L-0.008 ng/L.

EDC

Batch 0 Calibration verification

CALUX Relative Potencies Assessment (1)

Relative potencies assessment was performed twice:

- Change of the operator involved
- Stability over the time.

Conc (M)

	E2	EE2				E1				aE2				E3			
ECx level					RSD %				RSD %				RSD %				RSD %
(%)	ECx(M)	ECx (M)	REP	Mean	REP	ECx (M)	REP	Mean	REP	EC(x)	REP	Mean	REP	EC(x)	REP	Mean	REP
50	8.01E-12	4.26E-12	1.878			6.51E-10	0.0123			9.12E-10	0.00878			8.18E-11	0.09793		
40	5.76E-12	3.40E-12	1.697			5.09E-10	0.0113			6.73E-10	0.00857			6.29E-11	0.09161		
30	4.03E-12	2.65E-12	1.519	1.501	21	3.90E-10	0.0103	0.010	17	4.83E-10	0.00834	0.0083	5	4.73E-11	0.08519	0.084	14
20	2.60E-12	1.96E-12	1.327			2.82E-10	0.0092			3.23E-10	0.00806			3.34E-11	0.07795		
10	1.35E-12	1.25E-12	1.082			1.73E-10	0.0078			1.76E-10	0.00767			1.98E-11	0.06821		

EDC

l≋

VFD

Relative Potencies Assessment (2)

Compound	ISO 19040:3	Sonnesveld et al . 2005	ISPRA REP50 October 2022	ISPRA REP50 May 2022					
bE2	1	1	1	1					
E1	0.02	0.016	0.012	0.014					
aE2	0.1	0.011	0.0088	0.010					
E3	0.017	0.13	0.098	0.084					
EE2	1.3-1.5	1.88	1.9	1.4					
CV% ranged between 9-11%, the exception of EE2 (21%									

with

EDC 🖲 WFD

Matrices and concentrations levels tested (1)

1	EVIAN water + 1 mg/L DOC
2	EVIAN water + 7 mg/L DOC
3	EVIAN water + 7 mg/L DOC + 50 mg/L TSS
4	Tap water BAM – Adlerhof (DOC 10 mg/L, pH 7.1)
5	Teltow canal water (DOC 12 mg/L, pH 6.8)
6	Non sparkling comercially available mineral water (Lidl, Saskia - Source "Leissling" in Germany, DOC 3 mg/L, pH 6.5)

EDC

l≋

VFD

Matrices and concentrations levels tested (2)

Samples preparation and extractions carried out by BAM. The procedure followed was the one implemented by BAM within the Project (i.e. SPE disk + MiSPE purification)

CALUX concentrations levelsLow Concentration0.12 ng/L bE2 eq.

Medium Concentration 0.38 ng/L bE2 eq.

High Concentration 1.23 ng/L bE2 eq.

A-YES concentrations levels

Low Concentration 0.14 ng/L bE2 eq.

Medium Concentration 0.40 ng/L bE2 eq.

High Concentration 1.40 ng/L bE2 eq.

ISPRA REP10 are used to determine the cumulative effect of the spiked concentrations

ISO 19040-2 REP50 are used to determine the cumulative effect of the spiked concentrations

Matrices and concentrations levels tested (3)

- Measured values were corrected for the absolute recoveries weighted mean.
- Absolute recoveries of estrogens are known from the MS method validation studies carried out by BAM.
- The weighted mean was calculated taken into account the relative potencies of each estrogen.

Absolute recoveries: bE2= 79% aE2=80% EE2=81% E1=73% E3=63%

Corrected values are considered in the uncertainty evaluation (i.e. trueness assessment)

ED

22nd February 2023

Selectivity: Matrix, interferents and DOC effects (1)

Action	Calculations
<u>Matrix effect</u>	The Matrix Effect (ME) was assessed via comparison between the samples and water grade 3 dose- response curves at EEQ iso concentrations (i.e. high concentration) and the obtained results.
Interferents	The interferents effect was assessed via comparison
<u>effect</u>	between the samples and samples + interferents dose response curves at iso concentrations of hormones (high concentration).
	Ramified NP and BPA at French P95 selected as interferents and concentration levels respectively and the obtained results.
DOC effect:	The DOC effect is assessed via comparison between the observed curves (i.e. in-house reference materials containing EVIAN + DOC 1 mg/L, EVIAN + DOC 7 mg/L and EVIAN + DOC 14 mg/L spiked at high EEQ concentration) and the obtained results.

EDC

[≋]

WFD

Selectivity: Matrix, interferents and DOC effects (2)

Matrix effect: Dose-response curves for the 6th matrix

Interferents effect: comparison among normalized dose-response curves for the 5th matrix

CALUX

EDC

Selectivity: Matrix, interferents and DOC effects (3)

Dose-response curves associated to the calibration curve, water 3 grade spiked sample and the 6th matrix sample

Dose-response curves associated with the calibration curve, water 3 grade spiked sample and the 5th matrix samples

ED

Selectivity: Matrix, interferents and DOC effects (4)

CALUX

DOC effect: comparison among normalized dose-response curves at increasing DOC content

- -o- bE2 calibration curve
 - 1 mgL DOC+ high
- -O- concentrations of hormones
 - 7 mg/L DOC + high
- -O- concentrations of hormones
 - High DOC content (14 mg/L)+ high concentrations of hormones

EDC

Selectivity: Matrix, interferents and DOC effects (5)

A-YES

Dose-response curves associated to the calibration curve and matrices at increasing level of DOC spiked samples

22nd February 2023

Selectivity: Matrix, interferents and DOC effects (6)

- Similar behaviour in terms of EC50 and Hill's slope (Observed variability less than 20% and 15% for A-YES and CALUX respectively)
- Similar behaviour in terms of results (observed variability less than 20% and 25% for A-YES and CALUX respectively). *Reference values are obtained taking into account the targeted hormones.*
- A two tailed t-test was applied on the results, and the outcomes supported the hypothesis that the means were not significant different.

Precision assessment-CALUX

Precision was evaluated by following both NF T90-210 Standard and the ANOVA and applying the template implemented by ISPRA.

				Courses us at af	Internetiste		Within-
				Square root of	Intermediate		laboratory
	Replicate 1	Replicate 2	Replicate 3	NSI within	precision standard	Mean of the	reproducibility
Matrix	[M]	[M]	[M]	groups [M]	deviation [M]	means [M]	(%)
				S _{i,rep}	$S_{i,Between}$	$\overline{X_i}$	u _{i,rw}
DOC 1 mg/L	3.189E-13	2.623E-13	2.743E-13	4.41091E-14	2.33804E-14	2.76971E-13	18.0
DOC 7 mg/L	2.576E-13	2.518E-13	2.369E-13				
DOC 7 mg/L+SPM	3.572E-13	2.352E-13	2.327E-13				
Natural 1*	2.228E-13	2.361E-13	2.587E-13				
Natural 2*	2.249E-13	3.462E-13	2.567E-13				
Natural 3*	3.084E-13	3.264E-13	3.783E-13				
DOC 1 mg/L	9.585E-13	1.016E-12	8.197E-13	9.6285E-14	7.76387E-14	7.80384E-13	15.8
DOC 7 mg/L	7.435E-13	8.607E-13	6.222E-13				
DOC 7 mg/L+SPM	7.264E-13	7.068E-13	9.628E-13				
Natural 1*	7.67E-13	6.878E-13					
Natural 2*	5.724E-13	7.024E-13	6.668E-13				
Natural 3*	8.026E-13	8.198E-13	8.316E-13				
DOC 1 mg/L	2.822E-12	2.415E-12	3.406E-12	5.18936E-13	4.32047E-13	2.8161E-12	24.0
DOC 7 mg/L	2.075E-12	2.286E-12	2.652E-12				
DOC 7 mg/L+SPM	2.332E-12	2.093E-12	2.756E-12				
Natural 1*	2.721E-12	2.234E-12	2.728E-12				
Natural 2*	2.957E-12	2.914E-12	3.029E-12				
Natural 3*	4.108E-12	2.583E-12	4.576E-12				

Precision assessment-A-YES

Precision was evaluated by following both NF T90-210 Standard and the ANOVA and applying the template implemented by ISPRA.

				Courses us at of	Internedicto		Within-
	Devillante d	Devillente 2	Developed a 2	Square root of	Intermediate		laboratory
	Replicate 1	Replicate 2	Replicate 3		precision standard	iviean of the	reproducibility
Matrix	[ng/L]	[ng/L]	[ng/L]	groups [ng/L]	deviation [ng/L]	means [ng/L]	(%)
				S _{i,rep}	S _{i,Between}	Xi	u _{i,rw}
DOC 1 mg/L	0.1650727	0.1413123	0.1575694	0.067636416	0.014876319	0.159680732	43.4
DOC 7 mg/L	0.1400617	0.1675738	0.1400617				
DOC 7 mg/L+SPM	0.1363101	0.1388112	0.1400617				
Natural 1*	0.15882	0.1377302	0.1238046				
Natural 2*	0.1087979	0.1513167	0.1367296				
Natural 3*	0.1399596	0.4301895	0.1600705				
DOC 1 mg/L	0.4552006	0.392673	0.4253556	0.026572505	0	0.407669747	6.5
DOC 7 mg/L	0.4202824	0.4122777	0.4256716				
DOC 7 mg/L+SPM	0.4014269	0.3739148	0.4439456				
Natural 1*	0.3739148	0.4134187					
Natural 2*	0.3776664	0.4264379	0.4226862				
Natural 3*	0.3739148	0.4139324	0.3776664				
DOC 1 mg/L	1.4215559	1.3723515	1.3661549	0.042867672	0.01326444	1.39773268	3.2
DOC 7 mg/L	1.3952597	1.3884838	1.3794961				
DOC 7 mg/L+SPM	1.3862193	1.3756061	1.4106215				
Natural 1*	1.4009297	1.373105	1.3618501				
Natural 2*	1.3773895	1.4037911	1.3830771				
Natural 3*	1.5644393	1.4061784	1.3926792				

EDC

|≋|

/FD

Precision assessment-ANOVA

Anova: Single Factor										
SUMMARY										
Groups	Count	Sum	Average	Variance						
Row 1	3	1E-12	3.59E-13	1.41164E-27						
Row 2	3	9E-13	3.13E-13	1.80401E-28						
Row 3	3	1E-12	3.46E-13	8.02794E-27						
Row 4	3	9E-13	3.01E-13	5.22386E-28						
Row 5	3	1E-12	3.47E-13	6.27272E-27						
Row 6	3	1E-12	4.25E-13	2.09044E-27						
ANOVA										
Source of Variation	SS	df	MS	F	P-value	F crit				
Between Groups	2.84197E-26	5	5.68E-27	1.842887822	0.17879371	3.105875239				
Within Groups	3.7011E-26	12	3.08E-27							
Total	6.54307E-26	17								
F < F crit in all	F < F crit in all the three levels tested.									

Bias evaluation-CALUX

			Standard				Mean of the	Relative uncertainty
			uncertainty		Deviation		relative standard	at the i th
		EEQ Spiked	associated to	Matrix j	from the	Mean square of	uncertainties	concentration
		Reference	the EDC	Mean	complete	the deviations at	associated to EDC	associated to the
Matrix	Mean [M]	value [M]	addition (%)	recovery (%)	recovery (%)	the i th level (%) ²	addition (%)	bias (%)
	$X_{c+\Delta C,ij}$	ΔC	u _{i,conc rel}	R _{i,j}	b _{ij,rel}	b _{i rms, rel}	u _{i conc,rel}	$u_{i,b}$
DOC 1 mg/L	3.590E-13	4.54193E-13	3.5	79	-21.0	601	3.5	24.8
DOC 7 mg/L	3.133E-13	4.49907E-13	3.5	70	-30.4			
DOC 7 mg/L+SPM	3.463E-13	4.50445E-13	3.5	77	-23.1			
Natural 1*	3.012E-13	4.51117E-13	3.5	67	-33.2			
Natural 2*	3.474E-13	4.53366E-13	3.5	77	-23.4			
Natural 3*	4.252E-13	4.59824E-13	3.5	92	-7.5			
DOC 1 mg/L	1.173E-12	1.37482E-12	3.5	85	-14.7	869	3.5	29.7
DOC 7 mg/L	9.344E-13	1.37765E-12	3.5	68	-32.2			
DOC 7 mg/L+SPM	1.006E-12	1.35568E-12	3.5	74	-25.8			
Natural 1*	9.158E-13	1.36122E-12	3.5	67	-32.7			
Natural 2*	8.149E-13	1.35962E-12	3.5	60	-40.1			
Natural 3*	1.030E-12	1.37046E-12	3.5	75	-24.9			
DOC 1 mg/L	3.628E-12	4.55488E-12	3.5	80	-20.4	663	3.5	26.0
DOC 7 mg/L	2.943E-12	4.55836E-12	3.5	65	-35.4			
DOC 7 mg/L+SPM	3.014E-12	4.54085E-12	3.5	66	-33.6			
Natural 1*	3.225E-12	4.54381E-12	3.5	71	-29.0			
Natural 2*	3.736E-12	4.55947E-12	3.5	82	-18.1			
Natural 3*	4.729E-12	4.59572E-12	3.5	103	2.9			

The expected EEQ values were obtained by summing each target analyte spiked concentration corrected for its relative potency estimated at 10% of the effect.

EDC

Bias evaluation-A-YES

			Standard				Mean of the relative	Relative uncertainty
			uncertainty		Deviation		standard	at the i th
		EEQ Spiked	associated to	Matrix j	from the	Mean square of	uncertainties	concentration
		Reference	the EDC	Mean	complete	the deviations at	associated to EDC	associated to the
Matrix	Mean [ng/L]	value [ng/L]	addition (%)	recovery (%)	recovery (%)	the i th level (%) ²	addition (%)	bias (%)
	$X_{c+\Delta C,ij}$	ΔC	u _{i,conc} rel	$R_{i,j}$	b _{ij,rel}	b _{i rms, rel}	u _{i conc,rel}	$u_{i,b}$
DOC 1 mg/L	1.547E-01	0.130900687	3.5	118	18.1	1277	3.5	35.9
DOC 7 mg/L	1.492E-01	0.129665409	3.5	115	15.1			
DOC 7 mg/L+SPM	1.384E-01	0.129820511	3.5	107	6.6			
Natural 1*	1.401E-01	0.130014389	3.5	108	7.8			
Natural 2*	1.323E-01	0.130662494	3.5	101	1.2			
Natural 3*	2.434E-01	0.13252372	3.5	184	83.7			
DOC 1 mg/L	4.244E-01	0.396230635	3.5	107	7.1	20	3.5	5.7
DOC 7 mg/L	4.194E-01	0.397044921	3.5	106	5.6			
DOC 7 mg/L+SPM	4.064E-01	0.39071343	3.5	104	4.0			
Natural 1*	3.937E-01	0.392311536	3.5	100	0.3			
Natural 2*	4.089E-01	0.391848999	3.5	104	4.4			
Natural 3*	3.885E-01	0.3949732	3.5	98	-1.6			
DOC 1 mg/L	1.387E+00	1.3127404	3.5	106	5.6	43	3.5	7.4
DOC 7 mg/L	1.388E+00	1.313743025	3.5	106	5.6			
DOC 7 mg/L+SPM	1.391E+00	1.308696665	3.5	106	6.3			
Natural 1*	1.379E+00	1.309549727	3.5	105	5.3			
Natural 2*	1.388E+00	1.314064308	3.5	106	5.6			
Natural 3*	1.454E+00	1.324511547	3.5	110	9.8			

The expected EEQ values were obtained by summing each target analyte spiked concentration corrected for the ISO 19040-2 stated relative potencies.

Uncertainty evaluation according to ISO 11352

		Precision	Bias	Total Combined	CALI	JX
		Component	Component	Std Uncertainty		
Compound	Concentration Level (ng/L)	%	%	%	Rounded Relative Expanded Uncertainty (%)	
EEQ bio	0.12-0.38	18.0	24.8	30.6	61	
	0.38-1.2	15.8	29.7	33.6	67	
	>1.2	24.0	26.0	35.4	71	

		Precision Component	Bias Component	Total Combined Std Uncertainty	A-YES	
Compound	Concentration Level (ng/L)	%	%	%	Rounded Relative Expanded Uncertainty (%)	
EEQ bio	0.14-0.40	43.4	35.9	56.3	110	
	0.40-1.4	6.6	5.7	8.7	17	
	>1.4	3.2	7.4	8.1	16	

EDC

[≋]

VFD

Recommendations

- The analysis as sample of a bE2 dose-response curve independently prepared from the calibration curve is helpful in the assessment of the calibration curve validity over batches.
- The preparation of more than a reference plate decreases the risk of discharging all the other samples plates in case the reference curve does not fulfil the acceptance criteria.
- Sensitivity to different compounds is not always stable over the time, it is recommended that the laboratory should determine relative potencies and periodically check them.

Conclusions

- The applied Validation Experimental Design has proven to be fit for purpose for EBMs validation and their validation resulted more aligned to MS Methods validation.
- Matrix, interferents and DOC do not impact on the samples analyses in terms of results and dose-response curves when the implemented procedure is applied as preparation procedure of the samples.
- At concentrations close to the EQS, CALUX bioassay showed better results in terms of precision and bias component, whereas A-YES provided the lowest uncertainties when higher concentrations were considered.

THANKS FOR YOUR ATTENTION!

22nd February 2023

Fitting: Graph-Pad Prism 9.0 (4) Top – Bottom Y = Bottom + $1 + \left(\frac{EC_{50}}{X}\right)^{Hill \ Slope}$ Top verified by QC Liv 7 Relative Induction (%) Cytotoxity at 15000-8th level? Only seven levels 10000are taken into RLU Hill's slope verified account in the by QC Liv 4 5000final fitting interpolation 0+ **10**⁻¹⁵ 10-14 10-13 10-12 10-11 10-10 10⁻⁹ Conc (M) Bottom verified by X-Control Charts

Relative Potencies Assessment (2)

aE2 RLU BC-GM 31-05-2022

E1 RLU BC-GM 31-05-2022

E3 RLU BC-GM 31-05-2022

EE2 RLU BC-GM 31-05-2022

EDC

VFD

Calibration

Action	Calculations
Calibration: Measure	The calibration function was established by
the solvent in use,	calculating appropriate regression statistics.
negative controls and at	
least 7 calibration levels	
in triplicate	
<u>Calibration verification</u> :	Calculate the determination coefficient (R ²), the EC50 and the Z-factor (if requested). The following criteria should be verified:
	<u>Erα-CALUX:</u>
	R ² >0.98
	2.10 ⁻¹² M <ec50< 2.10<sup="">-11M</ec50<>
	Z factor > 0.6
	<u>A-YES:</u>
	R ² >0.98
	0.3 ng/L <ec50< 35="" l<="" ng="" th=""></ec50<>

