

WORKSHOP/TRAINING SESSION FOR STAKEHOLDERS AND END-USERS FROM INDUSTRY - 26TH NOVEMBER 2018

IMPROVEMENT OF REFERENCE TECHNIQUES CALORIMETRIC TECHNIQUE FOR MEASUREMENT OF TOTAL HEMISPHERICAL EMISSIVITY AT LNE

JACQUES HAMEURY (LNE)

Date : 26 November 2018

Calorimetric technique for measurement of total hemispherical emissivity at LNE

• Calorimetric technique with a steady temperature :

2 samples are heated in a black vacuum chamber at 78 K

The density of power radiated by the surface of the 2 samples is measured directly as well as the surface temperatures

The total hemispherical emissivity is calculated using the heat balance equation :

Improvement of Emissivity Measurements on Reflective Insulation Materials

Calorimetric technique for measurement of total hemispherical emissivity at LNE

Calorimetric technique for measurement of total hemispherical emissivity at LNE

Calorimetric technique for measurement of total hemispherical emissivity at LNE

Heat losses evaluation

Improvement of Emissivity Measurements on Reflective Insulation Materials

Sources of uncertainty
Areas of the samples
Area of the chamber
Surface of the samples rings
Emissivity of the chamber walls
Mean total hemispherical emissivity of the rings
Electrical power
Mean surface temperature of the samples
Mean temperature of the chamber walls
Mean surface temperature of the rings
Edge heat loss by radiation
Heat loss by conduction (samples / rings)
Heat loss by conduction (meter plate / guard ring)
Heat loss by air
Model used for emissivity calculation
Random variations of measured emissivities
Expected uncertainty for new configuration< 0.02

Calorimetric technique for measurement of total hemispherical emissivity at LNE

Improvement of Emissivity Measurements on Reflective Insulation Materials

Calorimetric technique for measurement of total hemispherical emissivity at LNE

New sample heating system : Samples diameter = 100 mm (relative increase of the radiating area = 2.58).

Better mechanical contact between the metal parts and the heating resistors \rightarrow better control of the temperatures of the parts, better thermal guard of the samples.

Status : new heating system operational by end of March 2019.

