

Dutch Metrology Institute

Hydrogen

Analytical method development for the most challenging impurities

Stefan Persijn spersijn@vsl.nl 8 November 2018

The challenge: H₂ purity analysis

Limits in ISO 14687-2 range from 300 µmol/mol down to 4 nmol/mol.

H₂ purity analysis: a real challenge

Formic acid Total hydrocarbons Ammonia Total sulphur Formaldehyde Total halogenates

✓ Suitable materials

- -sample cylinders
- -sampling lines, reducers, flow meters
- -analyzer
- ✓ Highly sensitive analyzer
- ✓ Reference materials & calibration

Current state-of-art for analytical methods

Sources:

- ASTM standards
- JIS standards
- NMI methods
- Contacts with instruments providers

Analytical methods:

- Gas chromatographic methods (GC-TCD, GC-MS...)
- Optical methods (FTIR, CRDS...)
- Other (Dew point analyzer...)
- Injection method: jet pulse injection, thermal desorption, pre-concentration device

Reports available at http://projects.lne.eu/jrp-hydrogen/tools-publications/

Capabilities analytical methods

							Impur	ity —	-			
Analytical technique	H2O	Total hydrocarbons	O2	Helium	Nitrogen & Argon	CO2	СО	Total sulphur	Formaldehyde	Formic acid	Ammonia	Total halogenated compounds
Dew point analyzer												
Vibrating quartz crystal analyzer												
CRDS		CH4										HCI
GC-MS												
GC-MS with jet pulse injection												
FTIR												
OFCEAS		CH4						H2S				HCI
FID												
GC-FID												
Methane GC-FID												
ECD												
GC-TCD												
GC-PDHID												
GC-SCD with concentrator												
GC-SCD without												
pre-concentration												
DNPH-HPLC-UV												
IC with concentrator												
IC-CD												
HPLC-CD												
CIC												
GC-ELCD												
TD-GC-MS								organic				
Galvanic cell O2 meter												
ICP-MS												No F- compounds

Comparison of methods based on performance characteristics

Methods	Working range	Detection limit (μmol/mol)	Selectivity	Repeatability	Linearity	Robustness	Accuracy	Precision	Measurement uncertainties
Dew point hygrometer	1 - 250 µmol/mol	1	good	-	-	-	-	-	-
Vibrating quartz crystal analyzer	2 - 250 µmol/mol	2	good	-	-	-	-	-	-
CRDS	-	Low range: 0.0008	High	0.0001 µmol/mol at 0.00044 µmol/mol	linearity coeff >0.995 over 4 magnitudes of concentration	-	-	-	-
CRDS	ex: 0.006-1750 µmol/mol	High range: 0.0042	high	0.0052 μmol/mol at 0.0015 μmol/mol	-	-	-	-	-
GC-MS with jet pulse injection	-	at least 4 µmol/mol		1.6 at 5.1 µmol/mol	-	-	-	-	-
OFCEAS	adaptable / 0-10 µmol/mol	lod 3σ 60seconds 0.001 μmol/mol	high	<1%	linearity coeff >0.999 linear on 4 to 5 decades of concentration	high	< 0.01 µmol/mol	1% relative or 2 LOD (which is worst).	0.005 µmol/mol
OFCEAS	adaptable / 0-100 µmol/mol	Expected lod 3σ 60seconds 0,01 µmol/mol	high	< 1%	linearity coeff >0.999 linear on 4 to 5 decades of concentration	high	Expected < 0.1 µmol/mol	1% relative or 2 LOD (which is worst).	expected < 0.05
FTIR	-	0.12-0.3	high	-	-	-	-	-	-

Comparison of methods based on performance characteristics

H₂O for ISO 14687-2

Parameter Methods	Volume needed	Pressure required	Other impurities which can be analyzed	Response time	Standards	Cost estimate
Dew point hygrometer	0.5 L/min for 30 min minimum (stabilisation may take longer)	adaptable close to atm		Direct reading but long stabilisation time	JIS K0225	
Vibrating quartz crystal analyzer	0.33 L/min for 20 min	adaptable close to atm		direct reading but long stabilisation time	JIS K0225	
CRDS	100 ml/min @ 15 min = 1.5 liter		4 impurities (ex: CO, CO ₂ , H ₂ O, CH ₄ or NH ₃)	10-15 minutes		4-species: 50-65 k€, single species: 40 k€
GC-MS with jet pulse injection			CO ₂ , Ar, N ₂ , O ₂		ASTM D7649-10	
OFCEAS	-standard flow 13 l/h, volume needed <1 l -special option fuel cell exhaust with test flow <2 l/h	adaptable 2 bara is great	HCHO, HCOOH, NH ₃ ppb level range to be confirmed on the same laser	< 1 minute	Information from AP2E	50 k€, combination of gases possible in 1 analyzer
FTIR			NH ₃ , CO, CO ₂ , formaldehyde, formic acid, methane		ASTM D7653-10	80 k€ for MKS multigas 2031 LN2

Multi-component analysers

ProCeas® HYDROGEN PURITY

Is a complete pre-calibrated multicomponent (H2S, CO, CO2, CH4, H2O, O2, NH3, H2O, HCHO, etc.) laser infrared spectrometer for measurements of impurities in hydrogen.

COMPONENT	ISO 14687-2 LIMITS (ppm)	LOD ProCeas®A(ppm)
H20	5	0,01
CH4	2	0,001
02	5	1
CO2	2	0,2
CO	0,2	0,001
H2S	0,004	0,001
НСНО	0,01	0,001
HCO2H	0,2	0,005
NH3	0,1	0,001
HCL	0,05	0,001

CRDSTiger Optics

FTIR MKS OFCEAS AP2E

Method development by Hydrogen project partners

NPL: GC-SCD & cryo-focussing

Hydrogen sulphide (H₂S)
Carbonyl sulphide (OCS)
Carbon disulphide (CS₂)
2-methyl-2-propanethiol (TBM)
Tetrahydrothiophene (THT)

VSL: CRDS

Hydrogen chloride (HCI) HCI in H₂ standard from CEM

RISE: GC-FID + TD-GC/FID-MS

Linear alkanes: C1 to C18 + oxygenated compounds:

1-butanol...

Speciation of sulphur – Cryo-focussing GC-SCD

LoD GC-SCD ~ low nmol/mol for sulphur compounds

- Strategy for speciation of pmol/mol: cryo-focussing
 - enhanced sensitivity & selectivity: Improving chromatography
 - larger volume of gas sampled: improving limit of detection
 - Pre-concentration of analyte before separation: increased signal

Achievements

Method development

 Testing of the cryo-focussing method on sulphur in H₂ standards

Gas standard development

Develop new gas standards in hydrogen:

Hydrogen sulphide (H₂S)
Carbonyl sulphide (OCS)
Carbon disulphide (CS₂)
2-methyl-2-propanethiol (TBM)
Tetrahydrothiophene (THT)

Large difference in MW & boiling point

Gas standards in H₂ of H₂S, OCS, CS₂, TBM & THT

Short life time (< 2 weeks)

400 nmol/mol 40 nmol/mol

4 nmol/mol

Rel. standard deviation

<13 % for all compounds at 4 nmol/mol <5 % for all compounds at 40 nmol/mol

Linearity Good over the range 4 – 400 nmol/mol

Limit of detection

LOD calculated based on peak height:

Compound	Concentration (nmol/mol)	Signal Height (μV)	Limit of detection* (pmol/mol)
Hydrogen sulphide	4.2	245.0	514
Carbonyl sulphide	4.3	519.9	248
Carbon disulphide	4.1	301.7	408
2-methyl-2-propaneth iol	3.8	94.1	1211
Tetrahydrothiophene	3.6	199.7	541

^{*}LoD's calculated using average noise height value of 10 μV

Speciation method for HCl in H₂: CRDS

- Operating range $\lambda = 2.3-5.1 \, \mu m$
- Power up to 3 Watt
- Line width ≤ 0.001 nm

Optical parametric oscillator (OPO)

- 1-5 km effective path length
- Coated cell to reduce adsorption of the impurities

Cavity Ring Down Spectroscopy (CRDS)

Speciation method for HCI in H₂

Choice of cell material & sampling line critical due to high reactivity of HCl (polymers, Dursan or SilcoNert 2000 coated)

CRDS cell & sampling lines

- Small hydrocarbons
- HCI, HF
- CH₂O, CH₂O₂
- NH₃, H₂O
- CO₂, CO

Detectable compounds

System suitable for low nmol/mol up to µmol/mol range. Calibration using gravimetric standards and permeation.

Calibration

Preparation of HCI in H₂ gas standard

Speciation method for HCl in H₂

Development & validation of speciation method based on GC for the measurement of separate hydrocarbons in H₂

Measurement uncertainty ~8-10% for hydrocarbons with GC-FID

Compounds	S/N	LOD µmol/mol (S/N = 2)	LOD µmolC/mol (S/N = 2)
Methane	490	0,04	0,04
Ethane	400	0,05	0,10
propane	150	0,10	0,30
Isobutane	200	0,09	0,38
Butane	220	0,09	0,37
Isopentane	240	0,08	0,46
Pentane	490	0,04	0,39
Total hydrocarbons		0,55	2,04

Development and validation of speciation method based on GC for the measurement of separate hydrocarbons in H₂

Achievements

- LoD of 2 µmolC/mol for "total hydrocarbons" (ISO14687-2) has been shown to be achievable.
- Advantages method: both hydrocarbons and oxygenated compounds can be identified either using the mass spectrometer (TD-GC/FID-MS) or retention time (GC/FID).

Measurement uncertainty 10-12% for hydrocarbons with TD-GC/FID-MS

Compound	ng of compound on Tenax TA	nmol/mol equivalent for 100 ml sample	nC	LOD µmolC/mol
Hexane	2	5,7	6	0,03
Decane	1	1,7	10	0,17
Octadecane	4	3,9	18	0,69
Toluene	1	2,7	7	0,19

Institute

Getting closer but....

....more practical (=cheaper, smaller, easier to use, multi-component) analytical solutions are needed.

Instrument specifications for the development of multi-component analysers using input from risk assessment

Probability of impurity presence	Steam methane reforming with PSA	Chlor-alkali process (membrane cell process)	PEM water electrolysis process with TSA
Frequent	CO	O ₂	None identified
Possible	N_2	None identified	None identified
Rare	CH ₄ , H ₂ O and Ar	N ₂ and H ₂ O	N ₂ , O ₂ and H ₂ O
Very rare	CH ₂ O	CO ₂	CO_2
Unlikely	He, CO, O ₂ , CH ₂ O ₂ , NH ₃ , sulphur compounds, hydrocarbons compounds, halogenated compounds	He, Ar, CO, CH ₄ , CH ₂ O, CH ₂ O ₂ , NH ₃ , sulphur compounds, hydrocarbons compounds, halogenated compounds	He, Ar, CO, CH ₄ , CH ₂ O, CH ₂ O ₂ , NH ₃ , sulphur compounds, hydrocarbons compounds, halogenated compounds

Method Component	CRDS	FTIR	OFCEAS
Water	Instrument 1	Instrument 1	Instrument 1
Oxygen	Instrument 4		Instrument 2
Carbon dioxide	Instrument 1	Instrument 1	Instrument 2
Carbon monoxide	Instrument 1	Instrument 1	Instrument 1
Formaldehyde	Instrument 3	Instrument 1	Instrument 1
Formic Acid		Instrument 1	Instrument 1
Ammonia	Instrument 2	Instrument 1	Instrument 1
Helium			
Total N ₂ and Ar			
Total hydrocarbons		Methane, Ethane	
		Methane, Ethane	
Methane	Instrument 1	Instrument 1	Instrument 1
	Instrument 1		Instrument 1
Methane	Instrument 1		Instrument 1 Instrument 1
Methane Total sulfur compounds	Instrument 1		
Methane Total sulfur compounds Hydrogen sulfide Total halogenated	Instrument 1 Instrument 5		
Methane Total sulfur compounds Hydrogen sulfide Total halogenated compounds			Instrument 1
Methane Total sulfur compounds Hydrogen sulfide Total halogenated compounds Hydrogen chloride	Instrument 5	Instrument 1	Instrument 1 Instrument 2 2 racks 19 inch 4U