

WP3 reporting Measuring the hydrogen capacity of hydride tanks

Oliver Büker | Benoit Delobelle | Olivier Gillia | Rodrigo Perez

PLAN

- ❖ Introduction Presentation of hydride storage
- **❖** ISO16111
- ❖ Different way to measure the hydrogen capacity of a tank
- Thermal mass flowmeter : details
- ❖ Tank manufactured and initially tested by Mahytec
- Test bench and results from FHA
- Test bench and results from CEA
- * Recommendations for optimized testing devices
- Conclusions and perspectives

A few words on hydride storage

Intermetallic Hydrides

- no progress expected in capacity, but work well
 - → research of low cost

Search for low cost precursor (i) impurities

(ii) fundamental research: influence of impurities on the absorption capacities

Complex Hydrides

- potential progress or rupture, but not working well
 - → alanates, LiBH4 + MgH2, LiNH2

Desequilibrate the thermodynamics and obtain reversibility

- nanoconfinement
- catalysis
- hybridation of materials (LiBH4+MgH2)

Hydride storage - principle

Hydride storage - principle

Hydride storage – exo/endo-thermicity

Matériau : TiVCr (BCC) – 0 – 40 bars at 30°C

→ security if leaks: auto-cooling and stopping

Hydride storage - principle

MmNi5 (LaNi5) laboratory alloy

$(MmNi_5Sn = La_{0.9}Ce_{0.05}Nd_{0.04}Pr_{0.01}Ni_{4.63}S_{T,0.32})$

Industrial alloy of the same formulation

M. Botzung Ph.D

Hydrides – somes examples

Family	Compound	Max weigth capacity (%)	Temp. (°C) at P=1 bar	Kinetics	ΔH (kJ/mol)
AB	FeTi	1.8	-8	Fast	-28.1
AB ₅	LaNi ₅	1.49	12	Very fast	-30.8
AB ₂	${ m Ti_{0.98}Zr_{0.02}V_{0.43}} \ { m Fe_{0.09}Cr_{0.05}Mn_{1.5}}$	1.9	-28	Very fast	-27.4
ВСС	(V _{0.9} Ti _{0.1}) _{0.95} Fe _{0.05}	3.7	36	Fast	-43.2
A ₂ B	Mg ₂ Ni	3.6	255	Mean	-64.5
complexe	NaAlH4	7.5	180	Mean	-70
Single element	Mg	7.6	279	Slow	-74.5

source : Sandrock review paper, 2003

Hydrides – somes examples

Hydride reversible capacity

The hydride reversible capacity is linked to **operating conditions**

operating temperature range [T_{load}:T_{unload}] operating pressure range [P_{load}:P_{unload}]

in ISO16111, the operating temperature range differs from service temperature range which is at least [-40:65] °C

Hydride reversible capacity

e.g. RC: rated capacity on ISO16111

Piloting the hydride tank

Pressure piloting

T = cst = T1 or T2

 $P = P_{unload}$ to P_{load}

Temperature piloting

T = T1 to T3

 $P = P_{un/load}$

Both

T = T1 to T2

 $P = P_{unload}$ to P_{load}

Tank reversible capacity

Tank reversible capacity > Material reversible capacity

Tank reversible capacity shall include the hydrogen in the hydride as well as the hydrogen in gaseous form

INTERNATIONAL STANDARD

ISO 16111

> First edition 2008-11-15

Transportable gas storage devices — Hydrogen absorbed in reversible metal hydride

Appareils de stockage de gaz transportables — Hydrogène absorbé dans un hydrure métallique réversible

From ISO 16111

P

RCP : Rated charging pressure ensure $\sigma < \sigma_{design}^{max}$

RCP PT Pressure corresponding to design stress limit σ_{design}^{max} Test pressure of the shell (<250 bar)

MDP

Maximum developped pressure <0,8 PT (generally at 65°C)

Design strength:

$$\sigma_{design}^{max} = \sigma_{P=1,25MDP} + \sigma_{th} + \sigma_{w} + \sigma_{shock} + \sigma_{hydride\ swell} + \sigma_{others} = PT$$

From ISO 16111

Fire test

• 1 MH tank

Burst test

• 3 MH tank

Drop test

• 1 MH tank

Leak test

• 1 MH tank

Hydrogen cycling

• 5 to 6 MH tank

Shut-off valve impact test

• 3 MH tank

Thermal cycling test

• 5 to 6 MH tank

Batch test

 Pressurize to destruction

Cycle test

for those used in a single orientation: 5 tanks in that orientation

for those used in a single orientation: 2x3 tanks in perpendicular orientation, horizontal and vertical

cycle between <5% of RC and >95% of RC

at pressure P=RCP for loading (and for unloading?)

	5	vibrate	50 cycles	vibrate	50 cycles	vibrate	50 cycles	•••
_								

minimum number of cycles

repeat until if strain measured at loaded state:

- For gages with strain > 0,5 strain design limit is stable → success
- > is exeeding the strain design limit or plastification is observed -> failure

Measurement techniques

Measurement tech. - Mass measurement

The idea is simply to weigth the absorbed gas (hydrogen)

Need very precise scale as H2 is light: AB tank: 0,8 kg H2 / 100 kg system

A lot of uncertainties coming from:

- weigth and stiffnesses of connection
- air movement around the tank

Measurement tech. - Volumetric method

Sievert method, based on 2 points:

- Calibrated volumes
- Pressure measurement

> Be careful of (long) transcient thermal effects

Commercial PCT products examples:

more often used as incremental to precisely determine the PCT curve

Measurement techniques

Volume count flowmeter: 1 rotating

Rotation speed is related to volume flow:

not very precise (leaks, flow regime sensitivity)

Volume count flowmeter: 2 linear

Volume discrete counting (V/ δt is the volume flow) Quite precise, used as calibration device

Thermal mass flowmeter

- Easy to use
- Composition of gas has to be known
- No traceability compared to other techniques (e.g. critical nozzles)

Need to be calibrated in order to provide traceability to SI units

No Europe NMI's provide direct traceability to H2

- → need a conversion factor
- → very often calibrated with He

Known manufacturers

Thermal mass flowmeter

CTTMFs (Capillary Type Thermal Mass Flow Meters)

2 technologies

assumption

$$\frac{\dot{m}_{capillary}}{\dot{m}_{main\ tube}} = cst$$

Temperature rise flowmeter

Rate loss heat flowmeter

 $\dot{m} = \operatorname{cst}_{\mathrm{T}} \Delta T$

maintaining $\Delta T = cst$

 $\dot{m} = \operatorname{cst}_{q}.q$

increase rangeability

Measurement tech. - Integrated flow

Test campaign on MAHYTEC hydride tank

The hydride tank characteristics

MASS TOTAL OF TANK, VALVE AND HYDRIDE	710 g			
MASS OF HYDRIDE	100 g			
MASS OF HYDROGEN STORED	1.5 g			
OPERATING TEMPERATURE	5 to 45 °C			
STORAGE TEMPERATURE	-10 to 65°C			
MAXIMUM PRESSURE	75 bar			
MAXIMUM REFILLING PRESSURE	15 bar			
ABSOLUTE WORKING PRESSURE AT 22°C	2.5 bar (± 0.5 bar) AB5 2.2 bar (± 0.5 bar) AB			
HYDRIDE TYPE	AB5 and AB			
STATE OF HYDRIDE	ACTIVATE			
ACTIVATION OF HYDRIDE	11/11/2016 AB5 01/03/2018 AB			

Test campaign on MAHYTEC hydride tank

The two hydrides tested

Measured by the weight method

Characteristics of device:

Scale: max 750 g, e = 0.01 g, d = 0.001 g

Digital pressure gauge: EM: -1 ... 30 bar, error: ± 0.2%

Condition test:

Loading: P_{loading} = 10 bar and T_{loading} = 22 °C

Unloading: T_{Unloading} = 22 °C

Properties comparison

	H capacity	PCT	Activation	Impurity Effects	Cyclic Stability	Ease of manufacture	Pyrophoricit y	Cost
AB ₅	0	+	+	+	+	+	0	0
AB	0	+	-	-	-	+	+	+

FHA installation

First installation for AB₅ test

Advantage: 3 mass flow, larger range (but expensive)

Drawback: no mass flow control

FHA installation

FHA results – AB₅ tank

FHA results – AB₅ tank

Pload=12 barg Punload=0 barg

	Test no. 1	Test no. 2	Test no. 3	Test no. 4	Test no. 5	Test no. 6
Température (°C)	22	22	22	22	35	22
Load P V-6 opening (bar)	5	5	5	5	5	5
Unload P V-6 open (bar)	8	5.5	10	11.9	11.9	5.2
Load stop mass flow Nml/min	1	1	1	1	1	1
Unloas stop mass flow Nml/min	0.5	1	1	1	1	1
Volume (load) NmL	15214,9	15488	14947,6	15329,5	13450,6	15287,7
Volume (unload) NmL	11917,33	13491	13230,2	12312,2	11370,8	12123,8
Load/Unload Deviation %	+21.7	+12.9	+11.5	+19.7	+15.5	+20.7
Load MAHYTEC Deviation %	-9,44	-7,81	-11,03	-8,75	-19,94	-9,00
Unload MAHYTEC Deviation %	-29,06	-19,70	-21,25	-26,71	-32,32	-27,83

NV-2, NV-4 NV-5 closed a bit

NV-2 closed

FHA Results – 1st intallation on AB₅ tank

Conclusions

- ✓ High di-symmetry of load and unload measures
- ✓ Underestimation compare to the Mahytec capacity measure depending on the adjustments, from -7% to -30% difference
- ✓ Adjustement of needle valve opening is difficult (iterative)
- ✓ Despite the use of needlevalves, there are overflows at each stage
- ✓ Needle valves oblige to cut the load into two parts (V6 opening) with overflow at each V6 opening
 - → 1 overflow at loading, 2 overflows at unloading
- ✓ Capacity measured is dependant on needle valves adjustements and switching pressure (for V-6 valve)!

FHA 2cd installation

New:

- Needle valve (NV_abs) after flowmeter in order to maintain P more constant on flowmeter
- Pressure regulator valve (VRPres-2) added for desorption before a needle valve (NV_des)

FHA 2cd installation

First installation for AB test

FHA Results on AB tank

Examination of one test

much shorter overflows

The test was performed under the following conditions:

- Temperature: 22 °C
- Inlet Pressure: 14.5 barg (15.5 bara)
- Flow to finish load: 2 NmL/min
- Pressure defined to finish the load ≥ 11 barg (12 bara)
- Flow to finish unload: 2 NmL/min
- Pressure defined to finish the unload ≤ 0.1 barg (1.1 bara)

Both the pressure and the flow criterions have to be accomplished

FHA Results – 2cd installation on AB tank

Results on 13 cycles

Cycle	Average Deviation Load/Unload	Average Deviation Load/Unload (%)		
1	438,1934634	4,781947913		
2	130,2304049	1,494550149		
3	147,3009908	1,734538385		
4	13,09968055	0,155986046		
5	25,55503911	0,30229119		
6	48,64181177	0,58202821		
7	62,77903017	0,762794551		
8	80,15249741	0,989060801		
9	43,53546065	0,543232887		
10	0	0		
11	149,7146213	1,919962811		
12	100,4458412	1,318778482		
13	88,93971975	1,183204384		
Average:		0,998766172		

Much closer values for loading and unloading

Significant decrease of capacity: behavior of the AB hydride? or a malfunctioning of pressure reducer VRPres-1

The test bench have been modified for the project :

- remove the 2cd mass flow
- replace the check valve by simple valves
- introduce a length before the mass flow in order to have a better establishment length
- change the PRD to 15 bars

CySHY test bench

Thermoregulator

The 10 g/h mass flow has been re-calibrated to 800 Nml/min.

Gas panel

Water bath in which the hydrogen tank is installed

Programmable automaton (Allen Bradley)

Synoptic (RS-View)

thermocouple

Dead volume correction

V1 volume is counted by mass flowmeter but is not entering in the tank

→ has to be withdrawn from measure

Test protocol

Initial conditions

P réservoir	-1	barg
T réservoir	22	°C
P H2 source	12.135	barg

Adjustable parameters

RDM5 load	RDM5_load	400	Nml/min
RDM5 déload	RDM5_unload	400	Nml/min
Threshold for mass flow too low	SB_RDM5	2	Nml/min
Stability time	SB_tempo	60	S

-					
Load	1	RDM5_C (RDM5 set point) = 0			
	2	Open V_V1			
	3	RDM5_C = 0,1	in order to avoid overfl		
	4	Wait:5s			
Loau	5	RDM5_C = RDM5_load			
	6	Wait: 60 s			
	7	Close V_V1 when RDM5 < SB_RDM5 during more than SB_tempo			
	8	RDM5_C = 0			
	9	Wait: 60 s			
	10	Ouverture V_V2			
	11	RDM5_C = 0,1	in order to avoid overflo		
	12	Wait: 5 s			
Unload	13	RDM5_C = RDM5_unload			
	14	Wait: 60 s			
	15	Close V_V2 when RDM5 < SB_RDN	И5 during more than SB_tempo		
	16	RDM5_C = 0			
	17	Wait: 60 s			
	18	Back to step 2			

CEA Results – AB₅ tank

Experiment at 400 Nml/min: 5th cycle

CEA Results – AB₅ tank

Experiment at 400 Nml/h

Cumulated mass

CEA Results

	P _{in} (bara)	P _{out} (bara)
Loading	13,136	P_{tank}
Unloading	P_{tank}	0,985

Problem when P or ΔP≈0 !!! →

Calibration as proposed by the provider

CEA Results

Result of extended calibration

CEA Results – Correction

CEA Results

Not too bad compared to Mahytec measurement [0%:5,7%]

Mass flow	t load	t unload	V load	V unload	Deviation	MAHYTEC	Difference to	Difference to
						capacity	announced	announced
							capacity (load)	capacity
								(unload)
NmL/min	min	min	NL	NL		NL		
50	379.71	389.59	17.76	17.54	1.25%	16.80	5.71%	4.40%
100	193.17	219.27	17.46	17.20	1.55%	16.80	3.93%	2.38%
400	69.92	136.46	17.27	16.80	2.79%	16.80	2.80%	0.00%

CEA Results

quite di-symmetric loading unloading at 400 Nml/min

less di-symmetric loading unloading at 100 Nml/min

→ can also explain the difference of capacity measured between loading and unloading

CEA - Further investigations

- Find origin of mass flow measure deviation at low P!?!?
 - ✓ Temperature bias via massflow meter body heating ? (control valve heating ?)
 - ✓ Flow regime change ?
 - ✓ Influence of flow rate piloting valve ? (transcient flows...)
- Do finer corrections
 - ✓ Volume V2 and V3
 - ✓ Di-symmetric loading/unloading
 - ✓ Sometimes : overflow
 - → estimate error
 - Transcient flow regimes :
 - → well time integrated ?

2 points to pay attention

When using needle valves (NV) for regulating the mass flows

Mass flow vary a lot !!!

- \rightarrow reduce this : use pressure regulators in order to pilot constat ΔP on NV
- ➤ When using a mass flow meter controller (no NV)

Use a controlled flow rate well in the mass flowmeter range

Deviation when used at low pressure!

→ avoid this: work near the calibration pressure or calibrate at two pressures

Problem using a needle valve without a pressure regulator

Mass flow through a NV :
$$\dot{m} = \sqrt{\frac{2}{\Lambda} \frac{M_{H_2}}{RT} S^2 P \Delta P}$$

ightharpoonup need to maintain P and Δ P constant

Proposed test bench when using needle valves

BPR UPR V_Vx NV Backward pressure regulator
Upward Pressure Regulator
Valve

Needle Valve

Mass flow works at P_{source} Needle valve works at P_{source}

Mass flow works at $^{\sim}P_{atm}$ Needle valve works at $^{\sim}P_{atm}$

Detailled analysis of each operation

Repose state

To minimize "pshit" effect, need to minimize Vol1, Vol2, Vol3a, Vol4a

Proposed test bench when using mass flow controler

BPR UPR V_Vx NV Backward pressure regulator Upward Pressure Regulator Valve Needle Valve

Mass flow works at P_{source}

Mass flow works at ~P_{atm}

+ same kind of correction that with needle valves (but no "pshit" effect)

Conclusion & Perspectives

- Measuring capacity with thermal mass flowmeters seems to be the best solution.

 But it is still delicate since a large range of flow rate and pressure are involved
- ➤ Thermal mass flowmeter, even though frequently used for measuring tank capacity, are not so accurate:
 - A precision <2% sould be attained taking a few precautions
- > Some incertainty origines have been detected / enlighten :
 - ✓ Some are understood and can be corrected by improving the test bench design Test bench geometries have been proposed, but it is necessary to test them
 - ✓ Some are not understood and necessitate more investigations

Mass flow deviation at low pressures (Brooks)

Understand why / Test others (Bronkhorst)

